Theory of Computing Systems

, Volume 55, Issue 1, pp 250–278 | Cite as

The Failure of the Strong Pumping Lemma for Multiple Context-Free Languages

  • Makoto Kanazawa
  • Gregory M. Kobele
  • Jens Michaelis
  • Sylvain Salvati
  • Ryo Yoshinaka
Article

Abstract

Seki et al. (Theor. Comput. Sci. 88(2):191–229, 1991) showed that every m-multiple context-free language L is weakly 2m-iterative in the sense that either L is finite or L contains a subset of the form \(\{ u_{0} w_{1}^{i} u_{1} \cdots w_{2m}^{i} u_{2m} \mid i \in \mathbb {N}\}\), where w1w2nε. Whether every m-multiple context-free language L is 2m-iterative, that is to say, whether all but finitely many elements z of L can be written as z=u0w1u1w2mu2m with w1w2mε and \(\{ u_{0} w_{1}^{i} u_{1} \cdots w_{2m}^{i} u_{2m} \mid i \in \mathbb {N}\} \subseteq L\), has been open. We show that there is a 3-multiple context-free language that is not k-iterative for any k.

Keywords

Multiple context-free grammar Pumping lemma 

References

  1. 1.
    Berstel, J., Boasson, L.: Context-free languages. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, vol. B, pp. 59–102. Elsevier, Amsterdam (1990) Google Scholar
  2. 2.
    Greibach, S.A.: Hierarchy theorems for two-way finite state transducers. Acta Inform. 11, 89–101 (1978) MATHMathSciNetGoogle Scholar
  3. 3.
    Greibach, S.A.: One-way finite visit automata. Theor. Comput. Sci. 6, 175–221 (1978) CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Groenink, A.V.: Mild context-sensitivity and tuple-based generalizations of context-free grammar. Linguist. Philos. 20(6), 607–636 (1997) CrossRefGoogle Scholar
  5. 5.
    Groenink, A.V.: Surface without Structure. Ph.D. thesis, University of Utrecht (1997) Google Scholar
  6. 6.
    Kanazawa, M.: The pumping lemma for well-nested multiple context-free languages. In: Diekert, V., Nowotka, D. (eds.) Developments in Language Theory: 13th International Conference, DLT 2009. Lecture Notes in Computer Science, vol. 5583, pp. 312–325. Springer, Berlin (2009) CrossRefGoogle Scholar
  7. 7.
    Kanazawa, M., Salvati, S.: Generating control languages with abstract categorial grammars. In: Preliminary Proceedings of FG-2007: The 12th Conference on Formal Grammar (2007) Google Scholar
  8. 8.
    Kanazawa, M., Salvati, S.: The copying power of well-nested multiple context-free grammars. In: Dediu, A.H., Fernau, H., Martín-Vide, C. (eds.) Language and Automata Theory and Applications, Fourth International Conference, LATA 2010. Lecture Notes in Computer Science, vol. 6031, pp. 344–355. Springer, Berlin (2010) Google Scholar
  9. 9.
    Kasami, T., Seki, H., Fujii, M.: Generalized context-free grammars, multiple context-free grammars and head grammars. Technical report, Osaka University (1987) Google Scholar
  10. 10.
    Kracht, M.: The Mathematics of Language. de Gruyter, Berlin (2003) CrossRefMATHGoogle Scholar
  11. 11.
    Michaelis, J.: On formal properties of minimalist grammars. Linguistics in Potsdam 13. Universitätsbibliothek, Publikationsstelle, Potsdam. Ph.D. thesis, ISBN 3-935024-28-2 Google Scholar
  12. 12.
    Palis, M.A., Shende, S.M.: Pumping lemmas for the control language hierarchy. Math. Syst. Theory 28(3), 199–213 (1995) CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Radzinski, D.: Chinese number-names, tree adjoining languages, and mild context-sensitivity. Comput. Linguist. 17(3), 277–299 (1991) Google Scholar
  14. 14.
    Seki, H., Matsumura, T., Fujii, M., Kasami, T.: On multiple context-free grammars. Theor. Comput. Sci. 88(2), 191–229 (1991) CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Vijay-Shanker, K., Weir, D.J., Joshi, A.K.: Characterizing structural descriptions produced by various grammatical formalisms. In: 25th Annual Meeting of the Association for Computational Linguistics, pp. 104–111 (1987) CrossRefGoogle Scholar
  16. 16.
    Weir, D.J.: A geometric hierarchy beyond context-free languages. Theor. Comput. Sci. 104(2), 235–261 (1992). doi:10.1016/0304-3975(92)90124-X CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Makoto Kanazawa
    • 1
  • Gregory M. Kobele
    • 2
  • Jens Michaelis
    • 3
  • Sylvain Salvati
    • 4
  • Ryo Yoshinaka
    • 5
  1. 1.National Institute of InformaticsTokyoJapan
  2. 2.Computation Institute and Department of LinguisticsUniversity of ChicagoChicagoUSA
  3. 3.Fakultät für Linguistik und LiteraturwissenschaftUniversität BielefeldBielefeldGermany
  4. 4.INRIA Bordeaux Sud-OuestTalence CedexFrance
  5. 5.Graduate School of InformaticsKyoto UniversityKyotoJapan

Personalised recommendations