Theory of Computing Systems

, Volume 56, Issue 4, pp 686–696 | Cite as

Omega-Rational Expressions with Bounded Synchronization Delay

  • Volker Diekert
  • Manfred Kufleitner


In 1965 Schützenberger published his famous result that star-free languages (\(\operatorname{SF}\)) and aperiodic languages (\(\operatorname{AP}\)) coincide over finite words, often written as \(\operatorname{SF}= \operatorname {AP}\). Perrin generalized \(\operatorname{SF} = \operatorname{AP}\) to infinite words in the mid 1980s. In 1973 Schützenberger presented another (and less known) characterization of aperiodic languages in terms of rational expressions where the use of the star operation is restricted to prefix codes with bounded synchronization delay and no complementation is used. We denote this class of languages by \(\operatorname{SD}\). In this paper, we present a generalization of \(\operatorname{SD}= \operatorname{AP}\) to infinite words. This became possible via a substantial simplification of the proof for the corresponding result for finite words. Moreover, we show that \(\operatorname{SD}= \operatorname{AP}\) can be viewed as more fundamental than \(\operatorname{SF}= \operatorname{AP}\) in the sense that the classical 1965 result of Schützenberger and its 1980s extension to infinite words by Perrin are immediate consequences of \(\operatorname{SD}= \operatorname{AP}\).


Omega-regular language Star-free language Finite monoid Local divisor Bounded synchronization delay 



We would like to thank Jean-Éric Pin for bringing the class \(\operatorname{SD}\) to our attention and for the proposal that the notion of local divisor might lead to a simplified proof for \(\operatorname{SD}(A^{*}) = \operatorname{AP}(A^{*})\).


  1. 1.
    Arnold, A.: A syntactic congruence for rational ω-languages. Theor. Comput. Sci. 39, 333–335 (1985) CrossRefzbMATHGoogle Scholar
  2. 2.
    Diekert, V., Gastin, P.: Pure future local temporal logics are expressively complete for Mazurkiewicz traces. Inf. Comput. 204, 1597–1619 (2006). Conference version in LATIN 2004, LNCS 2976, pp. 170–182 (2004) CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Diekert, V., Gastin, P.: First-order definable languages. In: Logic and Automata: History and Perspectives. Texts in Logic and Games, pp. 261–306. Amsterdam University Press, Amsterdam (2008) Google Scholar
  4. 4.
    Diekert, V., Gastin, P., Kufleitner, M.: A survey on small fragments of first-order logic over finite words. Int. J. Found. Comput. Sci. 19(3), 513–548 (2008). Special issue DLT 2007 CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Diekert, V., Kufleitner, M., Steinberg, B.: The Krohn-Rhodes theorem and local divisors. Fundam. Inform. 116(1–4), 65–77 (2012) zbMATHMathSciNetGoogle Scholar
  6. 6.
    Golomb, S.W., Gordon, B.: Codes with bounded synchronization delay. Inf. Control 8(4), 355–372 (1965) CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Kamp, J.A.W.: Tense logic and the theory of linear order. PhD thesis, University of California, Los Angeles (California) (1968) Google Scholar
  8. 8.
    McNaughton, R., Papert, S.: Counter-Free Automata. MIT Press, Cambridge (1971) zbMATHGoogle Scholar
  9. 9.
    Meyberg, K.: Lectures on algebras and triple systems. Technical report, University of Virginia, Charlottesville (1972) Google Scholar
  10. 10.
    Perrin, D.: Recent results on automata and infinite words. In: Mathematical Foundations of Computer Science, Prague, 1984. Lecture Notes in Comput. Sci., vol. 176, pp. 134–148. Springer, Berlin (1984) Google Scholar
  11. 11.
    Perrin, D., Pin, J.-É.: Infinite Words. Pure and Applied Mathematics, vol. 141. Elsevier, Amsterdam (2004) zbMATHGoogle Scholar
  12. 12.
    Pin, J.-É.: Varieties of Formal Languages. North Oxford Academic, London (1986) CrossRefzbMATHGoogle Scholar
  13. 13.
    Pin, J.-É., Straubing, H., Thérien, D.: Locally trivial categories and unambiguous concatenation. J. Pure Appl. Algebra 52(3), 297–311 (1988) CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Schützenberger, M.P.: On finite monoids having only trivial subgroups. Inf. Control 8, 190–194 (1965) CrossRefzbMATHGoogle Scholar
  15. 15.
    Schützenberger, M.P.: Sur certaines opérations de fermeture dans les langages rationnels. In: Symposia Mathematica, vol. XV. Convegno di Informatica Teorica, INDAM, Roma, 1973, pp. 245–253. Academic Press, London (1975) Google Scholar
  16. 16.
    Schützenberger, M.P.: Sur le produit de concaténation non ambigu. Semigroup Forum 13, 47–75 (1976) CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Tesson, P., Thérien, D.: Diamonds are forever: the variety DA. In: Semigroups, Algorithms, Automata and Languages 2001, Proceedings, pp. 475–500. World Scientific, Singapore (2002) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.FMIUniversity of StuttgartStuttgartGermany

Personalised recommendations