Theory of Computing Systems

, Volume 54, Issue 4, pp 715–730 | Cite as

The Kissing Problem: How to End a Gathering When Everyone Kisses Everyone Else Goodbye

  • Michael A. Bender
  • Ritwik Bose
  • Rezaul Chowdhury
  • Samuel McCauleyEmail author


This paper introduces the kissing problem: given a rectangular room with n people in it, what is the most efficient way for each pair of people to kiss each other goodbye? The room is viewed as a set of pixels that form a subset of the integer grid. At most one person can stand on a pixel at once, and people move horizontally or vertically. In order to move into a pixel in time step t, the pixel must be empty in time step t−1.

The paper gives one algorithm for kissing everyone goodbye.
  1. (1)

    This algorithm is a 4+o(1)-approximation algorithm in a crowded room (e.g., only one unoccupied pixel).

  2. (2)

    It is a 45+o(1)-approximation algorithm for kissing in a comfortable room (e.g., at most half the pixels are empty).

  3. (3)

    It is a 25+o(1)-approximation for kissing in a sparse room (more than half the pixels are empty) with two people abutting the far walls of the room.


This paper gives optimal solutions for small cases, which were found using a heuristic state space search (IDA*).


Algorithms Kissing Goodbye Block sliding Approximation algorithms Routing Communication 


  1. 1.
    Alpern, S.: Rendezvous search on labeled networks. Nav. Res. Logist. 49(3), 256–274 (2002) CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Alpern, S., Baston, V., Essegaier, S.: Rendezvous search on a graph. J. Appl. Probab. 36(1), 223–231 (1999) CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Arkin, E., Hassin, R.: Approximation algorithms for the geometric covering salesman problem. Discrete Appl. Math. 55(3), 197–218 (1994) CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Arkin, R.C.: Motor schema—based mobile robot navigation. Int. J. Robot. Res. 8(4), 92–112 (1989) CrossRefGoogle Scholar
  5. 5.
    Balch, T., Arkin, R.: Behavior-based formation control for multirobot teams. IEEE Trans. Robot. Autom. 14(6), 926–939 (1998) CrossRefGoogle Scholar
  6. 6.
    Balch, T., Hybinette, M.: Behavior-based coordination of large-scale robot formations. In: Proc. 4th International Conference on Multi Agent Systems, pp. 363–364 (2000) Google Scholar
  7. 7.
    Batalin, M., Sukhatme, G.: Spreading out: a local approach to multi-robot coverage. In: Proc. 6th International Symposium on Distributed Autonomous Robotic Systems, pp. 373–382 (2002) Google Scholar
  8. 8.
    Burgard, W., Moors, M., Fox, D., Simmons, R., Thrun, S.: Collaborative multi-robot exploration. In: Proc. IEEE International Conference on Robotics and Automation (ICRA), vol. 1, pp. 476–481 (2000) Google Scholar
  9. 9.
    Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Solving the robots gathering problem. In: Automata, Languages and Programming, pp. 1181–1196. Springer, Berlin (2003) CrossRefGoogle Scholar
  10. 10.
    Culberson, J., Schaeffer, J.: Efficiently searching the 15-puzzle. Technical report, Department of Computing Science, University of Alberta (1994) Google Scholar
  11. 11.
    Das, S., Flocchini, P., Santoro, N., Yamashita, M.: On the computational power of oblivious robots: forming a series of geometric patterns. In: Proc. 29th ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing (PODC), pp. 267–276 (2010) CrossRefGoogle Scholar
  12. 12.
    Dessmark, A., Fraigniaud, P., Kowalski, D.R., Pelc, A.: Deterministic rendezvous in graphs. Algorithmica 46(1), 69–96 (2006) CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Distributed coordination of a set of autonomous mobile robots. In: Proc. IEEE Intelligent Vehicles Symposium (IV), pp. 480–485 (2000) Google Scholar
  14. 14.
    Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of asynchronous robots with limited visibility. Theor. Comput. Sci. 337(1), 147–168 (2005) CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Garey, M., Graham, R., Johnson, D.: Some NP-complete geometric problems. In: Proc. 8th Annual ACM Symposium on Theory of Computing (STOC), pp. 10–22 (1976) Google Scholar
  16. 16.
    Gervasi, V., Prencipe, G.: Coordination without communication: the case of the flocking problem. Discrete Appl. Math. 144(3), 324–344 (2004) CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Gudmundsson, J., Levcopoulos, C.: A fast approximation algorithm for TSP with neighborhoods. Nord. J. Comput. 6(4), 469 (1999) zbMATHMathSciNetGoogle Scholar
  18. 18.
    Hearn, R., Demaine, E.: PSPACE-completeness of sliding-block puzzles and other problems through the nondeterministic constraint logic model of computation. Theor. Comput. Sci. 343(1–2), 72–96 (2005) CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Hearn, R.A., Demaine, E.D.: The nondeterministic constraint logic model of computation: reductions and applications. In: Proc. 29th International Conference on Automata, Languages and Programming (ICALP), pp. 401–413 (2002) CrossRefGoogle Scholar
  20. 20.
    Hearn, R.A., Demaine, E.D.: Games, Puzzles, and Computation. AK Peters, Wellesley (2009) zbMATHGoogle Scholar
  21. 21.
    Hopcroft, J., Schwartz, J., Sharir, M.: On the complexity of motion planning for multiple independent objects; PSPACE-hardness of the “warehouseman’s problem”. Int. J. Robot. Res. 3(4), 76–88 (1984) CrossRefGoogle Scholar
  22. 22.
    Hordern, E.: Sliding Piece Puzzles. Oxford University Press, London (1986) Google Scholar
  23. 23.
    Howard, A., Matarić, M., Sukhatme, G.: An incremental self-deployment algorithm for mobile sensor networks. Auton. Robots 13(2), 113–126 (2002) CrossRefzbMATHGoogle Scholar
  24. 24.
    Howard, A., Matarić, M., Sukhatme, G.: Mobile sensor network deployment using potential fields: a distributed, scalable solution to the area coverage problem. In: Proc. 6th International Symposium on Distributed Autonomous Robotics Systems (DARS), pp. 299–308 (2002) Google Scholar
  25. 25.
    Hsiang, T., Arkin, E., Bender, M., Fekete, S., Mitchell, J.: Algorithms for rapidly dispersing robot swarms in unknown environments. In: Proc. 5th Workshop on Algorithmic Foundations of Robotics (WAFR), pp. 77–94. Springer, Berlin (2004) CrossRefGoogle Scholar
  26. 26.
    Hwang, Y., Ahuja, N.: Gross motion planning—a survey. ACM Comput. Surv. 24(3), 219–291 (1992) CrossRefGoogle Scholar
  27. 27.
    Karlemo, F., Östergård, P.: On sliding block puzzles. J. Comb. Math. Comb. Comput. 34(1), 97–107 (2000) zbMATHGoogle Scholar
  28. 28.
    Kowalski, D.R., Malinowski, A.: How to meet in anonymous network. Theor. Comput. Sci. 399(1), 141–156 (2008) CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Kurazume, R., Nagata, S.: Cooperative positioning with multiple robots. In: Proc. IEEE International Conference on Robotics and Automation, pp. 1250–1257 (1994) Google Scholar
  30. 30.
    Leighton, F.T.: Introduction to Parallel Algorithms and Architectures. Morgan Kaufmann, San Mateo (1992) zbMATHGoogle Scholar
  31. 31.
    Lucas, É.: Récréations Mathématiques vol. 2. Gauthier-Villars, Paris (1883). Sixième récréation: Les jeux de demoiselles Google Scholar
  32. 32.
    Nassimi, D., Sahni, S.: Bitonic sort on a mesh-connected parallel computer. IEEE Trans. Comput. 100(1), 2–7 (1979) CrossRefGoogle Scholar
  33. 33.
    Rater, D., Warmuth, M.: Finding a shortest solution for the nxn extension of the 15-puzzle is intractable. J. Symb. Comput. 10, 111–137 (1990) CrossRefGoogle Scholar
  34. 34.
    Ratliff, H., Rosenthal, A.: Order-picking in a rectangular warehouse: a solvable case of the traveling salesman problem. Oper. Res. 31(3), 507–521 (1983) CrossRefzbMATHGoogle Scholar
  35. 35.
    Rekleitis, I.M., Dudek, G., Milios, E.E.: Graph-based exploration using multiple robots. In: Proc. 5th International Symposium on Distributed and Autonomous Robotic Systems (DARS), pp. 241–250 (2000) Google Scholar
  36. 36.
    Scherson, I., Sen, S.: Parallel sorting in two-dimensional VLSI models of computation. IEEE Trans. Comput. 38(2), 238–249 (1989) CrossRefzbMATHMathSciNetGoogle Scholar
  37. 37.
    Simmons, R., Apfelbaum, D., Burgard, W., Fox, D., Moors, M., Thrun, S., Younes, H.: Coordination for multi-robot exploration and mapping. In: Proc. National Conference on Artificial Intelligence (AAAI), pp. 852–858 (2000) Google Scholar
  38. 38.
    Singh, K., Fujimura, K.: Map making by cooperating mobile robots. In: Proc. IEEE International Conference on Robotics and Automation (ICRA), pp. 254–259 (1993) CrossRefGoogle Scholar
  39. 39.
    Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: formation of geometric patterns. SIAM J. Comput. 28(4), 1347–1363 (1999) CrossRefzbMATHMathSciNetGoogle Scholar
  40. 40.
    van’t Hof, P., Post, G., Briskorn, D.: Constructing fair round robin tournaments with a minimum number of breaks. Oper. Res. Lett. 38(6), 592–596 (2010) CrossRefzbMATHMathSciNetGoogle Scholar
  41. 41.
    Wagner, I., Lindenbaum, M., Bruckstein, A.: Distributed covering by ant-robots using evaporating traces. IEEE Trans. Robot. Autom. 15(5), 918–933 (1999) CrossRefGoogle Scholar
  42. 42.
    Wang, J.: On sign-board based inter-robot communication in distributed robotic systems. In: Proc. IEEE International Conference on Robotics and Automation (ICRA), pp. 1045–1050 (1994) Google Scholar
  43. 43.
    Wilson, R.M.: Graph puzzles, homotopy, and the alternating group. J. Comb. Theory, Ser. B 16(1), 86–96 (1974) CrossRefzbMATHGoogle Scholar
  44. 44.
    Yamauchi, B.: Frontier-based exploration using multiple robots. In: Proc. 2nd International Conference on Autonomous Agents, pp. 47–53 (1998) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Michael A. Bender
    • 1
    • 2
  • Ritwik Bose
    • 3
  • Rezaul Chowdhury
    • 1
  • Samuel McCauley
    • 1
    Email author
  1. 1.Department of Computer ScienceStony Brook UniversityStony BrookUSA
  2. 2.Tokutek, Inc.LexingtonUSA
  3. 3.Department of Computer ScienceUniversity of RochesterRochesterUSA

Personalised recommendations