Theory of Computing Systems

, Volume 54, Issue 1, pp 45–72 | Cite as

Parameterized Domination in Circle Graphs

  • Nicolas Bousquet
  • Daniel Gonçalves
  • George B. Mertzios
  • Christophe Paul
  • Ignasi Sau
  • Stéphan Thomassé


A circle graph is the intersection graph of a set of chords in a circle. Keil [Discrete Appl. Math., 42(1):51–63, 1993] proved that Dominating Set, Connected Dominating Set, and Total Dominating Set are NP-complete in circle graphs. To the best of our knowledge, nothing was known about the parameterized complexity of these problems in circle graphs. In this paper we prove the following results, which contribute in this direction:
  • Dominating Set, Independent Dominating Set, Connected Dominating Set, Total Dominating Set, and Acyclic Dominating Set are W[1]-hard in circle graphs, parameterized by the size of the solution.

  • Whereas both Connected Dominating Set and Acyclic Dominating Set are W[1]-hard in circle graphs, it turns out that Connected Acyclic Dominating Set is polynomial-time solvable in circle graphs.

  • If T is a given tree, deciding whether a circle graph G has a dominating set inducing a graph isomorphic to T is NP-complete when T is in the input, and FPT when parameterized by t=|V(T)|. We prove that the FPT algorithm runs in subexponential time, namely \(2^{\mathcal{O}(t \cdot\frac{\log\log t}{\log t})} \cdot n^{\mathcal{O}(1)}\), where n=|V(G)|.


Circle graphs Domination problems Parameterized complexity Parameterized algorithms Dynamic programming Constrained domination 



We would like to thank Sylvain Guillemot for stimulating discussions that motivated some of the research carried out in this paper, and to the anonymous referees for helpful suggestions that improved the presentation of the manuscript.


  1. 1.
    Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer Algorithms. Addison-Wesley, Reading (1974) zbMATHGoogle Scholar
  2. 2.
    Alber, J., Bodlaender, H.L., Fernau, H., Kloks, T., Niedermeier, R.: Fixed parameter algorithms for dominated set and related problems on planar graphs. Algorithmica 33(4), 461–493 (2002) CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Alon, N., Gutner, S.: Kernels for the Dominating Set Problem on Graphs with an Excluded Minor. Electronic Colloquium on Computational Complexity (ECCC) 15(066) (2008) Google Scholar
  4. 4.
    Amini, O., Peleg, D., Pérennes, S., Sau, I., Saurabh, S.: Degree-constrained subgraph problems: hardness and approximation. In: Proc. of the 6th Workshop on Approximation and On-Line Algorithms (ALGO/WAOA). LNCS, vol. 5426, pp. 29–42 (2008) Google Scholar
  5. 5.
    Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems without polynomial kernels. J. Comput. Syst. Sci. 75(8), 423–434 (2009) CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Courcelle, B.: The monadic second-order logic of graphs: definable sets of finite graphs. In: Proc. of the 14th International Workshop on Graph-theoretic Concepts in Computer Science (WG). LNCS, vol. 344, pp. 30–53 (1988) CrossRefGoogle Scholar
  7. 7.
    Cygan, M., Philip, G., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.O.: Dominating set is fixed parameter tractable in claw-free graphs. Theor. Comput. Sci. 412(50), 6982–7000 (2011) CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Damaschke, P.: The Hamiltonian circuit problem for circle graphs is NP-complete. Inf. Process. Lett. 32(1), 1–2 (1989) CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Damian-Iordache, M., Pemmaraju, S.V.: Hardness of approximating independent domination in circle graphs. In: 10th International Symposium on Algorithms and Computation (ISAAC). LNCS, vol. 1741, pp. 56–69 (1999) Google Scholar
  10. 10.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, New York (1999) CrossRefGoogle Scholar
  11. 11.
    Elmallah, E.S., Stewart, L.K.: Independence and domination in polygon graphs. Discrete Appl. Math. 44(1–3), 65–77 (1993) CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Even, S., Itai, A.: Queues, stacks and graphs. In: Press, A. (ed.) Theory of Machines and Computations, pp. 71–86 (1971) Google Scholar
  13. 13.
    Fellows, M.R., Hermelin, D., Rosamond, F.A., Vialette, S.: On the parameterized complexity of multiple-interval graph problems. Theor. Comput. Sci. 410(1), 53–61 (2009) CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press, Cambridge (2009) CrossRefzbMATHGoogle Scholar
  15. 15.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Berlin (2006) Google Scholar
  16. 16.
    Fomin, F., Gaspers, S., Golovach, P., Suchan, K., Szeider, S., Jan van Leeuwen, E., Vatshelle, M., Villanger, Y.: k-Gap interval graphs. In: Proc. of the 10th Latin American Theoretical INformatics Symposium (LATIN) (2012). Available at: arXiv:1112.3244 Google Scholar
  17. 17.
    Garey, M., Johnson, D.: Computers and Intractability. W.H. Freeman, San Francisco (1979) zbMATHGoogle Scholar
  18. 18.
    Gaspers, S., Kratsch, D., Liedloff, M., Todinca, I.: Exponential time algorithms for the minimum dominating set problem on some graph classes. ACM Trans. Algorithms 6, 1 (2009) CrossRefMathSciNetGoogle Scholar
  19. 19.
    Gavril, F.: Algorithms for a maximum clique and a maximum independent set of a circle graph. Networks 3, 261–273 (1973) CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Gavril, F.: Minimum weight feedback vertex sets in circle graphs. Inf. Process. Lett. 107(1), 1–6 (2008) CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Gioan, E., Paul, C., Tedder, M., Corneil, D.: Circle Graph Recognition in Time O(n+m)⋅α(n+m) (2011). Manuscript available at: arXiv:1104.3284
  22. 22.
    Hedetniemi, S.M., Hedetniemi, S.T., Rall, D.F.: Acyclic domination. Discrete Math. 222(1–3), 151–165 (2000) CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Hermelin, D., Mnich, M., van Leeuwen, E.J., Woeginger, G.J.: Domination when the stars are out. In: Proc. of the 38th International Colloquium on Automata, Languages and Programming (ICALP). LNCS, vol. 6755, pp. 462–473 (2011) CrossRefGoogle Scholar
  24. 24.
    Jiang, M., Zhang, Y.: Parameterized complexity in multiple-interval graphs: domination. In: Proc. of the 6th International Symposium on Parameterized and Exact Computation (IPEC). LNCS, vol. 7112, pp. 27–40 (2011) CrossRefGoogle Scholar
  25. 25.
    Keil, J.M.: The complexity of domination problems in circle graphs. Discrete Appl. Math. 42(1), 51–63 (1993) CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Keil, J.M., Stewart, L.: Approximating the minimum clique cover and other hard problems in subtree filament graphs. Discrete Appl. Math. 154(14), 1983–1995 (2006) CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Kloks, T.: Treewidth of circle graphs. Int. J. Found. Comput. Sci. 7(2), 111–120 (1996) CrossRefzbMATHGoogle Scholar
  28. 28.
    Marx, D.: Parameterized complexity of independence and domination on geometric graphs. In: Proc. of the 2nd International Workshop on Parameterized and Exact Computation (IWPEC). LNCS, vol. 4169, pp. 154–165 (2006) CrossRefGoogle Scholar
  29. 29.
    Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press, Oxford (2006) CrossRefzbMATHGoogle Scholar
  30. 30.
    Paz, A., Moran, S.: Nondeterministic polynomial optimization problems and their approximations. Theor. Comput. Sci. 15, 251–277 (1981) CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    Pietrzak, K.: On the parameterized complexity of the fixed alphabet shortest common supersequence and longest common subsequence problems. J. Comput. Syst. Sci. 67(4), 757–771 (2003) CrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    van Rooij, J.M.M., Bodlaender, H.L., Rossmanith, P.: Dynamic programming on tree decompositions using generalised fast subset convolution. In: Proc. of the 17th Annual European Symposium on Algorithms (ESA). LNCS, vol. 5757, pp. 566–577 (2009) Google Scholar
  33. 33.
    Rué, J., Sau, I., Thilikos, D.M.: Dynamic programming for graphs on surfaces. In: Proc. of the 37th International Colloquium on Automata, Languages and Programming (ICALP). LNCS, vol. 6198, pp. 372–383 (2010) CrossRefGoogle Scholar
  34. 34.
    Sherwani, N.A.: Algorithms for VLSI Physical Design Automation. Kluwer Academic, Norwell (1992) Google Scholar
  35. 35.
    Spinrad, J.: Recognition of circle graphs. J. Algorithms 16(2), 264–282 (1994) CrossRefzbMATHMathSciNetGoogle Scholar
  36. 36.
    Unger, W.: On the k-colouring of circle-graphs. In: Proc. of the 5th Annual Symposium on Theoretical Aspects of Computer Science (STACS). LNCS, vol. 294, pp. 61–72 (1988) Google Scholar
  37. 37.
    Unger, W.: The complexity of colouring circle graphs (extended abstract). In: Proc. of the 9th Annual Symposium on Theoretical Aspects of Computer Science (STACS). LNCS, vol. 577, pp. 389–400 (1992) Google Scholar
  38. 38.
    Xu, G., Kang, L., Shan, E.: Acyclic domination on bipartite permutation graphs. Inf. Process. Lett. 99(4), 139–144 (2006) CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Nicolas Bousquet
    • 1
  • Daniel Gonçalves
    • 1
  • George B. Mertzios
    • 2
  • Christophe Paul
    • 1
  • Ignasi Sau
    • 1
  • Stéphan Thomassé
    • 3
  1. 1.AlGCo project-teamCNRS, LIRMMMontpellierFrance
  2. 2.School of Engineering and Computing SciencesDurham UniversityDurhamUK
  3. 3.Laboratoire LIPU. Lyon, CNRS, ENS Lyon, INRIA, UCBLLyonFrance

Personalised recommendations