Theory of Computing Systems

, Volume 54, Issue 1, pp 24–44 | Cite as

The Bell Is Ringing in Speed-Scaled Multiprocessor Scheduling

Article

Abstract

This paper investigates the problem of scheduling jobs on multiple speed-scaled processors, i.e., we have constant α>1 such that running a processor at speed s results in energy consumption s α per time unit. We consider the general case where each job has a monotonously increasing cost function that penalizes delay. This includes the so far considered cases of deadlines, flow time, and weighted flow time. For any type of delay cost functions, we obtain the following results: Any β-approximation algorithm for a single processor yields a randomized βB α -approximation algorithm for multiple processors, where B α is the αth Bell number, that is, the number of partitions of a set of size α. The generated schedule is without migration, but we compare it to an optimal schedule with migration. Hence, this result holds for migratory and non-migratory schedules. Analogously, we show that any β-competitive online algorithm for a single processor yields a βB α -competitive online algorithm for multiple processors. Finally, we show that any β-approximation algorithm for multiple processors with migration yields a deterministic βB α -approximation algorithm for multiple processors without migration. These facts improve several approximation ratios and lead to new results. For instance, we obtain the first constant factor online and offline approximation algorithm for multiple processors without migration for arbitrary release times, deadlines, and job sizes.

Keywords

Approximation algorithms Online algorithms Randomized algorithms Scheduling Speed-scaling Probabilistic analysis 

Notes

Acknowledgement

We thank anonymous referees for carefully reading this paper.

References

  1. 1.
    Albers, S., Fujiwara, H.: Energy-efficient algorithms for flow time minimization. ACM Trans. Algorithms 3(4), 49 (2007) CrossRefMathSciNetGoogle Scholar
  2. 2.
    Albers, S., Greiner, G.: Personal communication (2008) Google Scholar
  3. 3.
    Albers, S., Müller, F., Schmelzer, S.: Speed scaling on parallel processors. In: Proceedings of the 19th Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA’07), pp. 289–298 (2007) Google Scholar
  4. 4.
    Andrew, L.L.H., Wierman, A., Tang, A.: Optimal speed scaling under arbitrary power functions. ACM SIGMETRICS Perform. Eval. Rev. 37(2), 39–41 (2009) CrossRefGoogle Scholar
  5. 5.
    Bansal, N., Bunde, D.P., Chan, H.-L., Pruhs, K.: Average rate speed scaling. In: Proceedings of the 36th International Colloquium on Automata, Languages and Programming (ICALP’08), pp. 240–251 (2008) Google Scholar
  6. 6.
    Bansal, N., Chan, H.-L., Pruhs, K.: Speed scaling with an arbitrary power function. In: Proceedings of the 20th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’09), pp. 693–701 (2009) CrossRefGoogle Scholar
  7. 7.
    Bansal, N., Chan, H.-L., Pruhs, K., Katz, D.: Improved bounds for speed scaling in devices obeying the cube-root rule. In: Proceedings of the 36th International Colloquium on Automata, Languages and Programming (ICALP’09), pp. 144–155 (2009) CrossRefGoogle Scholar
  8. 8.
    Bansal, N., Kimbrel, T., Pruhs, K.: Dynamic speed scaling to manage energy and temperature. In: Proceedings of 45th Symposium on Foundations of Computer Science (FOCS’04), pp. 520–529 (2004) CrossRefGoogle Scholar
  9. 9.
    Bansal, N., Kimbrel, T., Pruhs, K.: Speed scaling to manage energy and temperature. J. ACM 54(1), 3 (2007) CrossRefMathSciNetGoogle Scholar
  10. 10.
    Bansal, N., Pruhs, K., Stein, C.: Speed scaling for weighted flow time. In: Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’07), pp. 805–813 (2007) Google Scholar
  11. 11.
    Brooks, D.M., Bose, P., Schuster, S.E., Jacobson, H., Kudva, P.N., Buyuktosunoglu, A., Wellman, J.-D., Zyuban, V., Gupta, M., Cook, P.W.: Power-aware microarchitecture: design and modeling challenges for next-generation microprocessors. IEEE MICRO 20(6), 26–44 (2000) CrossRefGoogle Scholar
  12. 12.
    Bunde, D.P.: Power-aware scheduling for makespan and flow. In: Proceedings of the 18th Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA’06), pp. 190–196 (2006) Google Scholar
  13. 13.
    Chan, H.-L., Chan, W.-T., Lam, T.W., Lee, L.-K., Mak, K.-S., Wong, P.W.H.: Energy efficient online deadline scheduling. In: Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’07), pp. 795–804 (2007) Google Scholar
  14. 14.
    Chan, H.-L., Edmonds, J., Lam, T.W., Lee, L.-K., Marchetti-Spaccamela, A., Pruhs, K.: Nonclairvoyant speed scaling for flow and energy. In: Proceedings of the 26th International Symposium on Theoretical Aspects of Computer Science (STACS’09), pp. 255–264 (2009) Google Scholar
  15. 15.
    Chekuri, C., Goel, A., Khanna, S., Kumar, A.: Multi-processor scheduling to minimize flow time with epsilon resource augmentation. In: Proceedings of the 36th Annual ACM Symposium on Theory of Computing (STOC’04), pp. 363–372 (2004) Google Scholar
  16. 16.
    Dobinski, G.: Summierung der Reihe ∑n m/n! für m=1,2,3,4,5,…. Arch. Math. Phys. 61, 333–336 (1877) MATHGoogle Scholar
  17. 17.
    Garey, M.R., Johnson, D.S.: Computers and Intractability—A Guide to the Theory of NP-Completeness. Freeman, San Francisco (1979) MATHGoogle Scholar
  18. 18.
    Becker, H.W., Riordan, J.: The arithmetic of Bell and Stirling numbers. Am. J. Math. 70, 385–394 (1934) CrossRefMathSciNetGoogle Scholar
  19. 19.
    Irani, S., Pruhs, K.: Algorithmic problems in power management. SIGACT News 36(2), 63–76 (2005) CrossRefGoogle Scholar
  20. 20.
    Lam, T.W., Lee, L.-K., To, I.K.-K., Wong, P.W.H.: Energy efficient deadline scheduling in two processor systems. In: Proccedings of the 18th International Symposium on Algorithms and Computation (ISAAC’07), pp. 476–487 (2007) Google Scholar
  21. 21.
    Lam, T.W., Lee, L.-K., To, I.K.-K., Wong, P.W.H.: Competitive non-migratory scheduling for flow time and energy. In: Proceedings of the 20th Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA’08), pp. 256–264 (2008) Google Scholar
  22. 22.
    Lam, T.W., Lee, L.-K., To, I.K.-K., Wong, P.W.H.: Speed scaling functions for flow time scheduling based on active job count. In: Proceedings of the 16th Annual European Symposium on Algorithms (ESA’08), pp. 647–659 (2008) Google Scholar
  23. 23.
    Lovász, L.: Combinatorial Problems and Exercises. North-Holland, Amsterdam (1964) Google Scholar
  24. 24.
    Pruhs, K., Uthaisombut, P., Woeginger, G.J.: Getting the best response for your erg. ACM Trans. Algorithms 4(3), 1–17 (2008) CrossRefMathSciNetGoogle Scholar
  25. 25.
    Yao, F.F., Demers, A.J., Shenker, S.: A scheduling model for reduced CPU energy. In: Proceedings of the 36th Annual Symposium on Foundations of Computer Science (FOCS’95), pp. 374–382 (1995) Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Technische Universität MünchenMünchenGermany
  2. 2.IBM Research—ZürichZürichSwitzerland
  3. 3.Humboldt-Universität zu BerlinBerlinGermany

Personalised recommendations