Advertisement

Theory of Computing Systems

, Volume 54, Issue 3, pp 431–452 | Cite as

Weakly-Acyclic (Internet) Routing Games

  • Roee Engelberg
  • Michael Schapira
Article

Abstract

Weakly-acyclic games—a superclass of potential games—capture distributed environments where simple, globally-asynchronous interactions between strategic agents are guaranteed to converge to an equilibrium. We explore the class of routing games introduced in Fabrikant and Papadimitriou (The Complexity of Game Dynamics: BGP Oscillations, Sink Equilibria, and Beyond, pp. 844–853, 2008) and in Levin et al. (Interdomain Routing and Games, pp. 57–66, 2008), which models important aspects of routing on the Internet. We show that, in interesting contexts, such routing games are weakly acyclic and, moreover, that pure Nash equilibria in such games can be found in a computationally efficient manner.

Keywords

Weakly-acyclic games Routing games Convergence to Nash equilibrium Bestresponse dynamics 

References

  1. 1.
    Apt, K.R., Simon, S.: A classification of weakly acyclic games. In: Serna, M. (ed.) SAGT. Lecture Notes in Computer Science, vol. 7615, pp. 1–12. Springer, Berlin (2012) Google Scholar
  2. 2.
    Babaioff, M., Kleinberg, R., Papadimitriou, C.H.: Congestion games with malicious players. In: MacKie-Mason, J.K., Parkes, D.C., Resnick, P. (eds.) ACM Conference on Electronic Commerce, pp. 103–112. ACM, New York (2007) Google Scholar
  3. 3.
    Eliaz, K.: Fault tolerant implementation. Rev. Econ. Stud. 69, 589–610 (2002) CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Fabrikant, A., Jaggard, A.D., Schapira, M.: On the structure of weakly acyclic games. In: Kontogiannis, S.C., Koutsoupias, E., Spirakis, P.G. (eds.) SAGT. Lecture Notes in Computer Science, vol. 6386, pp. 126–137. Springer, Berlin (2010) Google Scholar
  5. 5.
    Fabrikant, A., Papadimitriou, C.H.: The complexity of game dynamics: BGP oscillations, sink equilibria, and beyond. In: Teng, S.-H. (ed.) SODA, pp. 844–853. SIAM, Philadelphia (2008) Google Scholar
  6. 6.
    Feigenbaum, J., Ramachandran, V., Schapira, M.: Incentive-compatible interdomain routing. In: Feigenbaum, J., Chuang, J.C.-I., Pennock, D.M. (eds.) ACM Conference on Electronic Commerce, pp. 130–139. ACM, New York (2006) Google Scholar
  7. 7.
    Friedman, J.W., Mezzetti, C.: Learning in games by random sampling. J. Econ. Theory 98, 55–84 (2001) CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Gao, L., Griffin, T., Rexford, J.: Inherently safe backup routing with BGP. In: INFOCOM, vol. 1, pp. 547–556. IEEE, New York (2001) Google Scholar
  9. 9.
    Gao, L., Rexford, J.: Stable internet routing without global coordination. IEEE/ACM Trans. Netw. 9(6), 681–692 (2001) CrossRefGoogle Scholar
  10. 10.
    Goemans, M., Mirrokni, V., Vetta, A.: Sink equilibria and convergence. In: FOCS, pp. 142–151. IEEE Computer Society, Los Alamitos (2005) Google Scholar
  11. 11.
    Goldberg, S., Halevi, S., Jaggard, A.D., Ramachandran, V., Wright, R.N.: Rationality and traffic attraction: Incentives for honest path announcements in BGP. In: Bahl, V., Wetherall, D., Savage, S., Stoica, I. (eds.) SIGCOMM, pp. 267–278. ACM, New York (2008) CrossRefGoogle Scholar
  12. 12.
    Gradwohl, R.: Fault tolerance in distributed mechanism design. In: Papadimitriou, C.H., Zhang, S. (eds.) WINE. Lecture Notes in Computer Science, vol. 5385, pp. 539–547. Springer, Berlin (2008) Google Scholar
  13. 13.
    Jaggard, A.D., Schapira, M., Wright, R.N.: Distributed computing with adaptive heuristics. In: ICS, pp. 417–443. Tsinghua University Press, Tsinghua (2011) Google Scholar
  14. 14.
    Kukushkin, N.S., Takahashi, S., Yamamori, T.: Improvement dynamics in games with strategic complementarities. Int. J. Game Theory 33(2), 229–238 (2005) CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Levin, H., Schapira, M., Zohar, A.: Interdomain routing and games. In: Dwork, C. (ed.) STOC, pp. 57–66. ACM, New York (2008) Google Scholar
  16. 16.
    Marden, J.R., Young, H.P., Arslan, G., Shamma, J.S.: Payoff-based dynamics in multi-player weakly acyclic games. SIAM J. Control Optim. 48, 373–396 (2009) CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Marden, J.R., Arslan, G., Shamma, J.S.: Connections between cooperative control and potential games illustrated on the consensus problem. In: Proceedings of the European Control Conference, July (2007) Google Scholar
  18. 18.
    Milchtaich, I.: Congestion games with player-specific payoff functions. Games Econ. Behav. 13, 111–124 (1996) CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Mirrokni, V.S., Skopalik, A.: On the complexity of Nash dynamics and sink equilibria. In: ACM Conference on Electronic Commerce, pp. 1–10 (2009) Google Scholar
  20. 20.
    Monderer, D., Shapley, L.S.: Potential games. Games Econ. Behav. 14(1), 124–143 (1996) CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Nisan, N., Schapira, M., Valiant, G., Zohar, A.: Best-response mechanisms. In: ICS, pp. 155–165. Tsinghua University Press, Tsinghua (2011) Google Scholar
  22. 22.
    Rosenthal, R.W.: A class of games possessing pure-strategy Nash equilibria. Int. J. Game Theory 2, 65–67 (1973) CrossRefzbMATHGoogle Scholar
  23. 23.
    Long, T.-T., Polukarov, M., Chapman, A.C., Rogers, A., Jennings, N.R.: On the existence of pure strategy Nash equilibria in integer-splittable weighted congestion games. In: Persiano, G. (ed.) SAGT. Lecture Notes in Computer Science, vol. 6982, pp. 236–253. Springer, Berlin (2011) Google Scholar
  24. 24.
    Young, H.P.: The evolution of conventions. Econometrica 61(1), 57–84 (1993) CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Google Inc. and Computer Science DepartmentTechnionHaifaIsrael
  2. 2.School of Computer Science and EngineeringHebrew University of JerusalemJerusalemIsrael

Personalised recommendations