Advertisement

Theory of Computing Systems

, Volume 53, Issue 4, pp 645–668 | Cite as

A Process Calculus with Finitary Comprehended Terms

  • J. A. Bergstra
  • C. A. MiddelburgEmail author
Article

Abstract

We introduce the notion of an ACP process algebra and the notion of a meadow enriched ACP process algebra. The former notion originates from the models of the axiom system ACP. The latter notion is a simple generalization of the former notion to processes in which data are involved, the mathematical structure of data being a meadow. Moreover, for all associative operators from the signature of meadow enriched ACP process algebras that are not of an auxiliary nature, we introduce variable-binding operators as generalizations. These variable-binding operators, which give rise to comprehended terms, have the property that they can always be eliminated. Thus, we obtain a process calculus whose terms can be interpreted in all meadow enriched ACP process algebras. Use of the variable-binding operators can have a major impact on the size of terms.

Keywords

ACP process algebra Meadow enriched ACP process algebra Variable-binding operator Comprehended term Process calculus 

Notes

Acknowledgements

We thank an anonymous referee for carefully reading a preliminary version of this paper, for pointing out some slips made in it, and for suggesting improvements of the presentation.

References

  1. 1.
    Baeten, J.C.M., van Glabbeek, R.J.: Merge and termination in process algebra. In: Nori, K.V. (ed.) Proceedings 7th Conference on Foundations of Software Technology and Theoretical Computer Science. Lecture Notes in Computer Science, vol. 287, pp. 153–172. Springer, Berlin (1987) CrossRefGoogle Scholar
  2. 2.
    Baeten, J.C.M., Middelburg, C.A.: Process Algebra with Timing. Monographs in Theoretical Computer Science, An EATCS Series. Springer, Berlin (2002) zbMATHCrossRefGoogle Scholar
  3. 3.
    Baeten, J.C.M., Weijland, W.P.: Process Algebra. Cambridge Tracts in Theoretical Computer Science, vol. 18. Cambridge University Press, Cambridge (1990) CrossRefGoogle Scholar
  4. 4.
    Bergstra, J.A., Bethke, I., Ponse, A.: Process algebra with combinators. In: Börger, E., Gurevich, Y., Meinke, K. (eds.) CSL’93. Lecture Notes in Computer Science, vol. 832, pp. 36–65. Springer, Berlin (1994) Google Scholar
  5. 5.
    Bergstra, J.A., Bethke, I., Ponse, A.: Cancellation meadows: a generic basis theorem and some applications. Comput. J. 56(1), 3–14 (2013) CrossRefGoogle Scholar
  6. 6.
    Bergstra, J.A., Hirshfeld, Y., Tucker, J.V.: Meadows and the equational specification of division. Theor. Comput. Sci. 410(12–13), 1261–1271 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Bergstra, J.A., Klop, J.W.: Process algebra for synchronous communication. Inf. Control 60(1–3), 109–137 (1984) MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Bergstra, J.A., Middelburg, C.A.: Splitting bisimulations and retrospective conditions. Inf. Comput. 204(7), 1083–1138 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Bergstra, J.A., Middelburg, C.A.: Meadow enriched ACP process algebras. arXiv:0901.3012v2 [math.RA] (2009)
  10. 10.
    Bergstra, J.A., Middelburg, C.A.: A process calculus with finitary comprehended terms. arXiv:0903.2914v1 [cs.LO] (2009)
  11. 11.
    Bergstra, J.A., Middelburg, C.A.: Inversive meadows and divisive meadows. J. Appl. Log. 9(3), 203–220 (2011) MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Bergstra, J.A., Tucker, J.V.: Elementary algebraic specifications of the rational complex numbers. In: Futatsugi, K., et al. (eds.) Goguen Festschrift. Lecture Notes in Computer Science, vol. 4060, pp. 459–475. Springer, Berlin (2006) Google Scholar
  13. 13.
    Bergstra, J.A., Tucker, J.V.: The rational numbers as an abstract data type. J. ACM 54(2), 7 (2007) MathSciNetCrossRefGoogle Scholar
  14. 14.
    Burris, S., Sankappanavar, H.P.: A Course in Universal Algebra. Graduate Texts in Mathematics, vol. 78. Springer, Berlin (1981) zbMATHCrossRefGoogle Scholar
  15. 15.
    Fokkink, W.J.: Introduction to Process Algebra. Texts in Theoretical Computer Science, An EATCS Series. Springer, Berlin (2000) zbMATHCrossRefGoogle Scholar
  16. 16.
    Groote, J.F., Ponse, A.: Proof theory for μCRL: A language for processes with data. In: Andrews, D.J., Groote, J.F., Middelburg, C.A. (eds.) Semantics of Specification Languages. Workshops in Computing Series, pp. 232–251. Springer, Berlin (1994) CrossRefGoogle Scholar
  17. 17.
    Groote, J.F., Ponse, A.: The syntax and semantics of μCRL. In: Ponse, A., Verhoef, C., van Vlijmen, S.F.M. (eds.) Algebra of Communicating Processes 1994. Workshops in Computing Series, pp. 26–62. Springer, Berlin (1995) CrossRefGoogle Scholar
  18. 18.
    Hindley, J.R., Seldin, J.P.: Introduction to Combinators and λ-Calculus. Cambridge University Press, Cambridge (1986) Google Scholar
  19. 19.
    Hodges, W.A.: Model Theory. Encyclopedia of Mathematics and Its Applications, vol. 42. Cambridge University Press, Cambridge (1993) zbMATHCrossRefGoogle Scholar
  20. 20.
    Kosiuczenko, P., Meinke, K.: On the power of higher-order algebraic specification methods. Inf. Comput. 124(1), 85–101 (1996) MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Koymans, C.P.J., Vrancken, J.L.M.: Extending process algebra with the empty process ϵ. Logic Group Preprint Series 1. Department of Philosophy, Utrecht University, Utrecht (1985) Google Scholar
  22. 22.
    Luttik, S.P.: Choice quantification in process algebra. PhD thesis, Programming Research Group, University of Amsterdam, Amsterdam (2002) Google Scholar
  23. 23.
    Mauw, S., Veltink, G.J.: A process specification formalism. Fundam. Inform. 13(2), 85–139 (1990) zbMATHGoogle Scholar
  24. 24.
    Meinke, K.: Universal algebra in higher types. Theor. Comput. Sci. 100(2), 385–417 (1992) MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Meinke, K.: Proof theory of higher-order equations: conservativity, normal forms and term rewriting. J. Comput. Syst. Sci. 67(1), 127–173 (2003) MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Meinke, K., Tucker, J.V.: Universal algebra. In: Abramsky, S., Gabbay, D.M., Maibaum, T.S.E. (eds.) Handbook of Logic in Computer Science, vol. I, pp. 189–411. Oxford University Press, Oxford (1992) Google Scholar
  27. 27.
    RAISE Language Group: The RAISE Specification Language. Prentice-Hall, Englewood Cliffs (1992) Google Scholar
  28. 28.
    Sannella, D., Tarlecki, A.: Algebraic preliminaries. In: Astesiano, E., Kreowski, H.J., Krieg-Brückner, B. (eds.) Algebraic Foundations of Systems Specification, pp. 13–30. Springer, Berlin (1999) CrossRefGoogle Scholar
  29. 29.
    Yong, S.: An algebraic generalization of Frege structures—binding algebras. Theor. Comput. Sci. 211(1–2), 189–232 (1999) zbMATHGoogle Scholar
  30. 30.
    Vrancken, J.L.M.: The algebra of communicating processes with empty process. Theor. Comput. Sci. 177(2), 287–328 (1997) MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Wirsing, M.: Algebraic specification. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, vol. B, pp. 675–788. Elsevier, Amsterdam (1990) Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Informatics Institute, Faculty of ScienceUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations