Advertisement

Theory of Computing Systems

, Volume 53, Issue 1, pp 53–72 | Cite as

The Price of Anarchy in Network Creation Games Is (Mostly) Constant

  • Matúš MihalákEmail author
  • Jan Christoph Schlegel
Article

Abstract

We study the price of anarchy and the structure of equilibria in network creation games. A network creation game is played by n players {1,2,…,n}, each identified with a vertex of a graph (network), where the strategy of player i, i=1,…,n, is to build some edges adjacent to i. The cost of building an edge is α>0, a fixed parameter of the game. The goal of every player is to minimize its creation cost plus its usage cost. The creation cost of player i is α times the number of built edges. In the SumGame variant, the usage cost of player i is the sum of distances from i to every node of the resulting graph. In the MaxGame variant, the usage cost is the eccentricity of i in the resulting graph of the game. In this paper we improve previously known bounds on the price of anarchy of the game (of both variants) for various ranges of α, and give new insights into the structure of equilibria for various values of α. The two main results of the paper show that for α>273⋅n all equilibria in SumGame are trees and thus the price of anarchy is constant, and that for α>129 all equilibria in MaxGame are trees and the price of anarchy is constant. For SumGame this answers (almost completely) one of the fundamental open problems in the field—is price of anarchy of the network creation game constant for all values of α?—in an affirmative way, up to a tiny range of α.

Keywords

Network creation games Nash equilibrium Price of anarchy 

Notes

Acknowledgements

This work has been partially supported by the Swiss National Science Foundation (SNF) under the grant number 200021_143323/1.

References

  1. 1.
    Albers, S., Eilts, S., Even-Dar, E., Mansour, Y., Roditty, L.: On Nash equilibria for a network creation game. In: Proc. 17th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 89–98. ACM, New York (2006). doi: 10.1145/1109557.1109568 CrossRefGoogle Scholar
  2. 2.
    Alon, N., Demaine, E.D., Tom Leighton, M.H.: Basic network creation games. In: Proc. 22nd ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pp. 106–113. ACM, New York (2010). doi: 10.1145/1810479.1810502 CrossRefGoogle Scholar
  3. 3.
    Bilò, D., Gualà, L., Leucci, S., Proietti, G.: The max-distance network creation game on general host graphs. In: Proc. 8th International Workshop on Internet and Network Economics (WINE), pp. 392–405 (2012). doi: 10.1007/978-3-642-35311-6_29 CrossRefGoogle Scholar
  4. 4.
    Bilò, D., Gualà, L., Proietti, G.: Bounded-distance network creation games. In: Proc. 8th International Workshop on Internet and Network Economics (WINE), pp. 72–85 (2012). doi: 10.1007/978-3-642-35311-6_6 CrossRefGoogle Scholar
  5. 5.
    Brautbar, M., Kearns, M.: A clustering coefficient network formation game. In: Proc. Fourth International Symposium on Algorithmic Game Theory (SAGT), pp. 224–235 (2011). doi: 10.1007/978-3-642-24829-0_21 CrossRefGoogle Scholar
  6. 6.
    Demaine, E.D., Hajiaghayi, M., Mahini, H., Zadimoghaddam, M.: The price of anarchy in network creation games. ACM Trans. Algorithms 8(2), 1–13 (2012). doi: 10.1145/2151171.2151176 MathSciNetCrossRefGoogle Scholar
  7. 7.
    Ehsani, S., Fazli, M., Mehrabian, A., Sadeghian Sadeghabad, S., Safari, M., Saghafian, M., ShokatFadaee, S.: On a bounded budget network creation game. In: Proc. 23rd ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pp. 207–214 (2011). doi: 10.1145/1989493.1989523 CrossRefGoogle Scholar
  8. 8.
    Fabrikant, A., Luthra, A., Maneva, E., Papadimitriou, C.H., Shenker, S.: On a network creation game. In: Proc. 22nd Annual Symposium on Principles of Distributed Computing (PODC), pp. 347–351. ACM, New York (2003). doi: 10.1145/872035.872088 Google Scholar
  9. 9.
    Garey, M.R., Johnson, D.: Computers and Intractability: a Guide to the Theory of NP-completeness. Freeman, San Francisco (1979) zbMATHGoogle Scholar
  10. 10.
    Jackson, M.O.: Social and Economic Networks. Princeton University Press, Princeton (2008) zbMATHGoogle Scholar
  11. 11.
    Jackson, M.O., Wolinski, A.: A strategic model of social and economic networks. J. Econ. Theory 71(1), 44–74 (1996). doi: 10.1006/jeth.1996.0108 zbMATHCrossRefGoogle Scholar
  12. 12.
    Kawald, B., Lenzner, P.: On dynamics in selfish network creation. CoRR (2012). arXiv:1212.4797 [cs.GT]
  13. 13.
    Lenzner, P.: On dynamics in basic network creation games. In: Proc. Fourth International Symposium on Algorithmic Game Theory (SAGT), pp. 254–265 (2011). doi: 10.1007/978-3-642-24829-0_23 CrossRefGoogle Scholar
  14. 14.
    Lenzner, P.: Greedy selfish network creation. In: Proc. Eighth International Workshop on Internet and Network Economics (WINE), pp. 142–155 (2012). doi: 10.1007/978-3-642-35311-6_11 CrossRefGoogle Scholar
  15. 15.
    Lin, H.: On the price of anarchy of a network creation game (2003). Final class-project Google Scholar
  16. 16.
    Mihalák, M., Schlegel, J.C.: Asymmetric swap-equilibrium: a unifying equilibrium concept for network creation games. In: Proc. 37th International Symposium on Mathematical Foundations of Computer Science (MFCS), pp. 693–704 (2012). doi: 10.1007/978-3-642-32589-2_60 Google Scholar
  17. 17.
    Müller, D.: About constricted cycles in Nash equilibria of the local connection game. Semester thesis, ETH, Zurich (2012) Google Scholar
  18. 18.
    Tardos, E., Wexler, T.: Network formation games. In: Nisan, N., Rougarden, T., Tardos, É., Vazirani, V. (eds.) Algorithmic Game Theory. Cambridge University Press, Cambridge (2007) Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Institute of Theoretical Computer ScienceETH ZurichZurichSwitzerland
  2. 2.Faculty of Business and EconomicsUniversity of LausanneLausanneSwitzerland

Personalised recommendations