Theory of Computing Systems

, Volume 53, Issue 4, pp 609–620 | Cite as

A Polynomial Kernel for Feedback Arc Set on Bipartite Tournaments

  • Pranabendu Misra
  • Venkatesh Raman
  • M. S. Ramanujan
  • Saket Saurabh


In the k-Feedback Arc/Vertex Set problem we are given a directed graph D and a positive integer k and the objective is to check whether it is possible to delete at most k arcs/vertices from D to make it acyclic. Dom et al. (J. Discrete Algorithm 8(1):76–86, 2010) initiated a study of the Feedback Arc Set problem on bipartite tournaments (k-FASBT) in the realm of parameterized complexity. They showed that k-FASBT can be solved in time O(3.373 k n 6) on bipartite tournaments having n vertices. However, until now there was no known polynomial sized problem kernel for k-FASBT. In this paper we obtain a cubic vertex kernel for k-FASBT. This completes the kernelization picture for the Feedback Arc/Vertex Set problem on tournaments and bipartite tournaments, as for all other problems polynomial kernels were known before. We obtain our kernel using a non-trivial application of “independent modules” which could be of independent interest.


Kernelization Feedback arc set Bipartite tournament 


  1. 1.
    Abu-Khzam, F.N.: A kernelization algorithm for d-hitting set. J. Comput. Syst. Sci. 76(7), 524–531 (2010) MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Ailon, N., Charikar, M., Newman, A.: Aggregating inconsistent information: ranking and clustering. In: STOC, pp. 684–693 (2005) Google Scholar
  3. 3.
    Alon, N.: Ranking tournaments. SIAM J. Discrete Math. 20(1), 137–142 (2006) MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Alon, N., Lokshtanov, D., Saurabh, S.: Fast FAST. In: ICALP. LNCS, vol. 5555, pp. 49–58 (2009) Google Scholar
  5. 5.
    Bang-Jensen, J., Gutin, G.: Digraphs: Theory. Algorithms and Applications. Springer Monographs in Mathematics. Springer, Berlin (2009) CrossRefGoogle Scholar
  6. 6.
    Bang-Jensen, J., Thomassen, C.: A polynomial algorithm for the 2-path problem for semicomplete digraphs. SIAM J. Discrete Math. 5(3), 366–376 (1992) MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Bessy, S., Fomin, F.V., Gaspers, S., Paul, C., Perez, A., Saurabh, S., Thomassé, S.: Kernels for feedback arc set in tournaments. In: FSTTCS, pp. 37–47 (2009) Google Scholar
  8. 8.
    Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems without polynomial kernels. J. Comput. Syst. Sci. 75(8), 423–434 (2009) MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Bodlaender, H.L., Fomin, F.V., Lokshtanov, D., Penninkx, E., Saurabh, S., Thilikos, D.M.: (Meta) Kernelization. In: FOCS, pp. 629–638 (2009) Google Scholar
  10. 10.
    Cai, M.C., Deng, X., Zang, W.: A min-max theorem on feedback vertex sets. Math. Oper. Res. 27(2), 361–371 (2002) MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Charbit, P., Thomassé, S., Yeo, A.: The minimum feedback arc set problem is NP-hard for tournaments. Comb. Probab. Comput. 16(1), 1–4 (2007) MATHCrossRefGoogle Scholar
  12. 12.
    Cohen, W.W., Schapire, R.E., Singer, Y.: Learning to order things. In: NIPS, pp. 451–457 (1997) Google Scholar
  13. 13.
    Dell, H., van Melkebeek, D.: Satisfiability allows no nontrivial sparsification unless the polynomial-time hierarchy collapses. In: STOC, pp. 251–260 (2010) Google Scholar
  14. 14.
    Dom, M., Guo, J., Hüffner, F., Niedermeier, R., Truß, A.: Fixed-parameter tractability results for feedback set problems in tournaments. J. Discrete Algorithms 8(1), 76–86 (2010) MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Dom, M., Lokshtanov, D., Saurabh, S.: Incompressibility through colors and IDs. In: ICALP. LNCS, vol. 5555, pp. 378–389 (2009) Google Scholar
  16. 16.
    Dwork, C., Kumar, R., Naor, M., Sivakumar, D.: Rank aggregation methods for the web. In: WWW, pp. 613–622 (2001) Google Scholar
  17. 17.
    Fomin, F.V., Lokshtanov, D., Saurabh, S., Thilikos, D.M.: Bidimensionality and kernels. In: SODA, pp. 503–510 (2010) Google Scholar
  18. 18.
    Guo, J.: A more effective linear kernelization for cluster editing. Theor. Comput. Sci. 410(8–10), 718–726 (2009) MATHCrossRefGoogle Scholar
  19. 19.
    Guo, J., Hüffner, F., Moser, H.: Feedback arc set in bipartite tournaments is np-complete. Inf. Process. Lett. 102(2–3), 62–65 (2007) MATHCrossRefGoogle Scholar
  20. 20.
    Gupta, S.: Feedback arc set problem in bipartite tournaments. Inf. Process. Lett. 105(4), 150–154 (2008) MATHCrossRefGoogle Scholar
  21. 21.
    Habib, M., Paul, C.: A survey of the algorithmic aspects of modular decomposition. Comput. Sci. Rev. 4(1), 41–59 (2010) CrossRefGoogle Scholar
  22. 22.
    Karpinski, M., Schudy, W.: Faster algorithms for feedback arc set tournament, kemeny rank aggregation and betweenness tournament. CoRR abs/1006.4396 (2010) Google Scholar
  23. 23.
    Kemeny, J.: Mathematics without numbers. Daedalus 88, 571–591 (1959) Google Scholar
  24. 24.
    Kemeny, J., Snell, J.: Mathematical Models in the Social Sciences. Blaisdell, Boston (1962) MATHGoogle Scholar
  25. 25.
    Kenyon-Mathieu, C., Schudy, W.: How to rank with few errors. In: STOC, pp. 95–103 (2007) Google Scholar
  26. 26.
    Misra, P., Raman, V., Ramanujan, M.S., Saurabh, S.: A polynomial kernel for feedback arc set on bipartite tournaments. In: ISAAC, pp. 333–343 (2011) Google Scholar
  27. 27.
    Raman, V., Saurabh, S.: Parameterized algorithms for feedback set problems and their duals in tournaments. Theor. Comput. Sci. 351(3), 446–458 (2006) MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Sanghvi, B., Koul, N., Honavar, V.: Identifying and eliminating inconsistencies in mappings across hierarchical ontologies. In: OTM Conferences (2). LNCS, vol. 6427, pp. 999–1008 (2010) Google Scholar
  29. 29.
    Speckenmeyer, E.: On feedback problems in digraphs. In: WG. LNCS, vol. 411, pp. 218–231 (1989) Google Scholar
  30. 30.
    Tedder, M., Corneil, D.G., Habib, M., Paul, C.: Simpler linear-time modular decomposition via recursive factorizing permutations. In: ICALP. LNCS, pp. 634–645 (2008) Google Scholar
  31. 31.
    Thomassé, S.: A 4k 2 kernel for feedback vertex set. ACM Trans. Algorithms 6(2) (2010) Google Scholar
  32. 32.
    Xiao, M., Guo, J.: A quadratic vertex kernel for feedback arc set in bipartite tournaments. In: MFCS. LNCS, vol. 7464, pp. 825–835 (2012) Google Scholar
  33. 33.
    van Zuylen, A.: Linear programming based approximation algorithms for feedback set problems in bipartite tournaments. Theor. Comput. Sci. 412(23), 2556–2561 (2011) MATHCrossRefGoogle Scholar
  34. 34.
    van Zuylen, A., Hegde, R., Jain, K., Williamson, D.P.: Deterministic pivoting algorithms for constrained ranking and clustering problems. In: SODA, pp. 405–414 (2007) Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Pranabendu Misra
    • 1
  • Venkatesh Raman
    • 1
  • M. S. Ramanujan
    • 1
  • Saket Saurabh
    • 1
  1. 1.Institute of Mathematical SciencesTaramaniIndia

Personalised recommendations