Theory of Computing Systems

, Volume 56, Issue 1, pp 73–81 | Cite as

A Lower Bound on Deterministic Online Algorithms for Scheduling on Related Machines Without Preemption

  • Tomáš Ebenlendr
  • Jiří Sgall


We consider one-by-one online scheduling on uniformly related machines. The input is a sequence of machines with different speeds and a sequence of jobs with different processing times. The output is a schedule which assigns the jobs to the machines; the completion time of a machine is the sum of the processing times of jobs assigned to it divided by its speed. The objective is to minimize the maximal completion time. The jobs arrive one by one and each has to be assigned to one machine immediately and irrevocably without the knowledge of the future jobs. We prove a new lower bound of 2.564 on the competitive ratio of deterministic online algorithms for this problem, improving the previous lower bound of 2.438.


Online algorithms Scheduling Makespan Uniformly related machines Lower bounds 



We are grateful to anonymous reviewers and György Dósa for helpful comments.


  1. 1.
    Aspnes, J., Azar, Y., Fiat, A., Plotkin, S., Waarts, O.: On-line load balancing with applications to machine scheduling and virtual circuit routing. J. ACM 44, 486–504 (1997) CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Azar, Y.: On-line load balancing. In: Fiat, A., Woeginger, G.J. (eds.) Online Algorithms: The State of the Art, pp. 178–195. Springer, Berlin (1998) CrossRefGoogle Scholar
  3. 3.
    Bar-Noy, A., Freund, A., Naor, J.: New algorithms for related machines with temporary jobs. J. Sched. 3, 259–272 (2000) CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Berman, P., Charikar, M., Karpinski, M.: On-line load balancing for related machines. In: Proc. 5th Workshop on Algorithms and Data Structures (WADS). Lecture Notes in Comput. Sci., vol. 1272, pp. 116–125. Springer, Berlin (1997) CrossRefGoogle Scholar
  5. 5.
    Berman, P., Charikar, M., Karpinski, M.: On-line load balancing for related machines. J. Algorithms 35, 108–121 (2000) CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Cai, S.Y., Yang, Q.F.: Online scheduling on three uniform machines. Discrete Appl. Math. 160, 291–302 (2011) CrossRefMathSciNetGoogle Scholar
  7. 7.
    Cho, Y., Sahni, S.: Bounds for list schedules on uniform processors. SIAM J. Comput. 9, 91–103 (1980) CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Ebenlendr, T.: Combinatorial algorithms for online problems: semi-online scheduling on related machines. PhD thesis, Charles University, Prague (2011) Google Scholar
  9. 9.
    Ebenlendr, T., Jawor, W., Sgall, J.: Preemptive online scheduling: optimal algorithms for all speeds. Algorithmica 53, 504–522 (2009) CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Epstein, L., Noga, J., Seiden, S.S., Sgall, J., Woeginger, G.J.: Randomized on-line scheduling for two uniform machines. J. Sched. 4, 71–92 (2001) CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Epstein, L., Sgall, J.: A lower bound for on-line scheduling on uniformly related machines. Oper. Res. Lett. 26, 17–22 (2000) CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Han, F., Tan, Z., Yang, Y.: On the optimality of list scheduling for online uniform machines scheduling. Optim. Lett. 7, 1551–1571 (2012) CrossRefMathSciNetGoogle Scholar
  13. 13.
    Jeż, Ł., Schwartz, J., Sgall, J., Békési, J.: Lower bounds for online makespan minimization on a small number of related machines. J. Sched. (2012). doi: 10.1007/s10951-012-0288-7 Google Scholar
  14. 14.
    Musitelli, A., Nicoletti, J.M.: Competitive ratio of list scheduling on uniform machines and randomized heuristics. J. Sched. 14, 89–101 (2011) CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Institute of Mathematics, AS CRPraha 1Czech Republic
  2. 2.Faculty of Mathematics and PhysicsComputer Science Inst. of Charles UniversityPraha 1Czech Republic

Personalised recommendations