Advertisement

Theory of Computing Systems

, Volume 56, Issue 1, pp 22–40 | Cite as

OnlineMin: A Fast Strongly Competitive Randomized Paging Algorithm

  • Gerth Stølting Brodal
  • Gabriel Moruz
  • Andrei Negoescu
Article

Abstract

In the field of online algorithms paging is one of the most studied problems. For randomized paging algorithms a tight bound of H k on the competitive ratio has been known for decades, yet existing algorithms matching this bound have high running times. We present a new randomized paging algorithm OnlineMin that has optimal competitiveness and allows fast implementations. In fact, if k pages fit in internal memory the best previous solution required O(k 2) time per request and O(k) space. We present two implementations of OnlineMin which use O(k) space, but only O(logk) worst case time and O(logk/loglogk) worst case time per page request respectively.

Keywords

On-line algorithms Competitive analysis Paging Randomized algorithms 

Notes

Acknowledgements

We would like to thank previous anonymous reviewers for very insightful comments and suggestions. Also, we would like to thank Annamária Kovács for useful advice on improving the presentation of the paper.

References

  1. 1.
    Achlioptas, D., Chrobak, M., Noga, J.: Competitive analysis of randomized paging algorithms. Theor. Comput. Sci. 234(1–2), 203–218 (2000) CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Albers, S.: Online algorithms: a survey. Math. Program. 97(1–2), 3–26 (2003) zbMATHMathSciNetGoogle Scholar
  3. 3.
    Alstrup, S., Husfeldt, T., Rauhe, T.: Marked ancestor problems. In: Proc. 39th Annual Symposium on Foundations of Computer Science, pp. 534–544. IEEE Comp. Soc., Los Alamitos (1998) Google Scholar
  4. 4.
    Andersson, A., Thorup, M.: Dynamic ordered sets with exponential search trees. J. ACM 54(3), 13 (2007) CrossRefMathSciNetGoogle Scholar
  5. 5.
    Bayer, R., McCreight, E.: Organization and maintenance of large ordered indexes. Acta Inform. 1(3), 173–189 (1972) CrossRefGoogle Scholar
  6. 6.
    Bein, W.W., Larmore, L.L., Noga, J., Reischuk, R.: Knowledge state algorithms. Algorithmica 60(3), 653–678 (2011) CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Belady, L.A.: A study of replacement algorithms for virtual-storage computer. IBM Syst. J. 5(2), 78–101 (1966) CrossRefGoogle Scholar
  8. 8.
    Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cambridge University Press, Cambridge (1998) zbMATHGoogle Scholar
  9. 9.
    Chrobak, M., Koutsoupias, E., Noga, J.: More on randomized on-line algorithms for caching. Theor. Comput. Sci. 290(3), 1997–2008 (2003) CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Fiat, A., Karp, R.M., Luby, M., McGeoch, L.A., Sleator, D.D., Young, N.E.: Competitive paging algorithms. J. Algorithms 12(4), 685–699 (1991) CrossRefzbMATHGoogle Scholar
  11. 11.
    Fiat, A., Woeginger, G.J. (eds.): Online Algorithms, the State of the Art. Lecture Notes in Computer Science, vol. 1442. Springer, Berlin (1998) (the book grow out of a Dagstuhl Seminar, June 1996) zbMATHGoogle Scholar
  12. 12.
    Fisher, R.A., Yates, F.: Statistical Tables for Biological, Agricultural, and Medical Research, 3rd edn. Oliver & Boyd, Edinburgh (1948) zbMATHGoogle Scholar
  13. 13.
    Fredman, M.L., Willard, D.E.: Surpassing the information theoretic bound with fusion trees. J. Comput. Syst. Sci. 47(3), 424–436 (1993) CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Fredman, M.L., Willard, D.E.: Trans-dichotomous algorithms for minimum spanning trees and shortest paths. J. Comput. Syst. Sci. 48(3), 533–551 (1994) CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Karlin, A.R., Manasse, M.S., Rudolph, L., Sleator, D.D.: Competitive snoopy caching. Algorithmica 3, 77–119 (1988) CrossRefMathSciNetGoogle Scholar
  16. 16.
    Koutsoupias, E., Papadimitriou, C.H.: Beyond competitive analysis. In: Proc. 35th Symposium on Foundations of Computer Science, pp. 394–400. IEEE Comput. Soc., Los Alamitos (1994) CrossRefGoogle Scholar
  17. 17.
    McCreight, E.M.: Priority search trees. SIAM J. Comput. 14(2), 257–276 (1985) CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    McGeoch, L.A., Sleator, D.D.: A strongly competitive randomized paging algorithm. Algorithmica 6(6), 816–825 (1991) CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules. Commun. ACM 28(2), 202–208 (1985) CrossRefMathSciNetGoogle Scholar
  20. 20.
    Willard, D.E.: Examining computational geometry, van Emde Boas trees, and hashing from the perspective of the fusion tree. SIAM J. Comput. 29(3), 1030–1049 (2000) CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Gerth Stølting Brodal
    • 1
  • Gabriel Moruz
    • 2
  • Andrei Negoescu
    • 2
  1. 1.MADALGO (Center for Massive Data Algorithmics, a Center of the Danish National Research Foundation), Department of Computer ScienceAarhus UniversityAarhus NDenmark
  2. 2.Institut für InformatikGoethe-Universität Frankfurt am MainFrankfurt am MainGermany

Personalised recommendations