Theory of Computing Systems

, Volume 52, Issue 1, pp 65–79 | Cite as

Martin-Löf Randomness, Invariant Measures and Countable Homogeneous Structures

Article

Abstract

We use ideas from topological dynamics (amenability), combinatorics (structural Ramsey theory) and model theory (Fraïssé limits) to study closed amenable subgroups G of the symmetric group S of a countable set, where S has the topology of pointwise convergence. We construct G-invariant measures on the universal minimal flows associated with these groups G in, moreover, an algorithmic manner. This leads to an identification of the generic elements, in the sense of being Martin-Löf random, of these flows with respect to the constructed invariant measures. Along these lines we study the random elements of S, which are permutations that transform recursively presented universal structures into such structures which are Martin-Löf random.

Keywords

Martin-Löf randomness Topological dynamics Amenable groups Fraïssé limits Ramsey theory 

Notes

Acknowledgements

The research is based upon work supported by the National Research Foundation (NRF) of South Africa. Any opinion, findings and conclusions or recommendations expressed in this material are those of the author and therefore the NRF does not accept any liability in regard thereto.

The author also wishes to express his thanks to an anonymous referee for a careful reading of this paper.

References

  1. 1.
    Banach, S.: Sur le problème de la mesure. Fundam. Math. 4, 7–33 (1923) MATHGoogle Scholar
  2. 2.
    Bhattacharjee, M., Macpherson, D.: A locally finite dense group acting on the random graph. Forum Math. 17, 513–517 (2005) MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Bienvenue, L., Gacs, P., Hoyrup, M., Rojas, C., Shen, A.: Algorithmic tests and randomness with respect to a class of measures (2011). Available at http://arxiv.org/abs/1103.1529
  4. 4.
    Csima, F., Harizanov, V.S., Miller, R., Montálban, A.: Computability of Fraïssé limits. J. Symb. Log. 76(1), 66–93 (2011) MATHCrossRefGoogle Scholar
  5. 5.
    Drinfield, V.G.: Solution of the Banach-Ruziewicz problem on S 2 and S 3. Funct. Anal. Appl. 18, 77–78 (1984) Google Scholar
  6. 6.
    Ellis, R.: Universal minimal sets. Proc. Am. Math. Soc. 11, 272–281 (1949) Google Scholar
  7. 7.
    Fouché, W.L.: Symmetry and the Ramsey degree of posets. Discrete Math. 167/168, 309–315 (1997) CrossRefGoogle Scholar
  8. 8.
    Fouché, W.L., Potgieter, P.H.: Kolmogorov complexity and symmetrical relational structures. J. Symb. Log. 63, 1083–1094 (1998) MATHCrossRefGoogle Scholar
  9. 9.
    Fremlin, D.H.: Measure Theory: Topological Measure Spaces, vol. 4 (2003). Torres Fremlin MATHGoogle Scholar
  10. 10.
    Glasner, E., Weiss, B.: Minimal actions of the group S(ℤ) of permutations of the integers. Geom. Funct. Anal. 5, 964–988 (2002) MathSciNetCrossRefGoogle Scholar
  11. 11.
    Harrow, A., Recht, B., Chuang, I.: Efficient discrete approximations of quantum gates. J. Math. Phys. 43, 4445–4451 (2002) MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Hodges, W.: A Shorter Model Theory. Cambridge University Press, Cambridge (1993) CrossRefGoogle Scholar
  13. 13.
    Hrushovski, E.: Extending partial isomorphisms of graphs. Combinatorica 12, 411–416 (1992) MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Kechris, A.S.: The dynamics of automorphism groups of homogeneous structures. Lecture at LMS Northern Regional Meeting, July 2011 Google Scholar
  15. 15.
    Kechris, A.S., Pestov, V.G., Todorcevic, S.: Fraïssé limits, Ramsey theory, and topological dynamics of automorphism groups. Geom. Funct. Anal. 15, 106–189 (2005) MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Kechris, A.S., Rosendal, C.: Turbulence, amalgamation and generic automorphisms of homogeneous structures. Proc. Lond. Math. Soc. 94(3), 302–350 (2007) MathSciNetMATHGoogle Scholar
  17. 17.
    Kechris, A.S., Sokič, M.: Dynamical properties of the automorphism groups of the random poset and random distributive lattice (2011). Available at http://www.math.caltech.edu/people/kechris.html
  18. 18.
    Lubotzky, A., Phillips, R., Sarnak, P.: Hecke operators and distributing points on S 2 I. Commun. Pure Appl. Math. 39, 149–186 (1986) MathSciNetCrossRefGoogle Scholar
  19. 19.
    Lubotzky, A., Phillips, R., Sarnak, P.: Hecke operators and distributing points on S 2 II. Commun. Pure Appl. Math. 40, 410–420 (1987) MathSciNetCrossRefGoogle Scholar
  20. 20.
    Margulis, G.: Some remarks on invariant means. Monatshefte Math. 90, 233–235 (1980) MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Margulis, G.: Finitely additive invariant measures on Euclidean spaces. Ergod. Theory Dyn. Syst. 2, 383–396 (1982) MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Neumann, B.H.: On ordered division rings. Trans. Am. Math. Soc. 66, 202–252 (1949) MATHCrossRefGoogle Scholar
  23. 23.
    Pestov, V.G.: On free actions, minimal flows, and a problem by Ellis. Trans. Am. Math. Soc. 350(10), 4149–4165 (1998) MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Petrov, F., Vershik, A.: Uncountable graphs and invariant means on the set of universal countable graphs. In: Random Structures and Algorithms, vol. 126, pp. 389–405 (2010) Google Scholar
  25. 25.
    Sarnak, P.: Some Applications of Modular Forms. Cambridge University Press, Cambridge (1990) MATHCrossRefGoogle Scholar
  26. 26.
    Sullivan, D.: For n>3, there is only one finitely additive rotationally invariant measure on the n-sphere defined on all Lebesgue measurable sets. Bull., New Ser., Am. Math. Soc. 4, 121–123 (1981) MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Decision SciencesUniversity of South AfricaPretoriaSouth Africa

Personalised recommendations