Theory of Computing Systems

, Volume 52, Issue 4, pp 719–728 | Cite as

Parameterized Complexity of Satisfying Almost All Linear Equations over \(\mathbb{F}_{2}\)

  • R. Crowston
  • G. Gutin
  • M. Jones
  • A. Yeo


The problem MaxLin2 can be stated as follows. We are given a system S of m equations in variables x 1,…,x n , where each equation \(\sum_{i \in I_{j}}x_{i} = b_{j}\) is assigned a positive integral weight w j and \(b_{j} \in\mathbb{F}_{2}\), I j ⊆{1,2,…,n} for j=1,…,m. We are required to find an assignment of values in \(\mathbb{F}_{2}\) to the variables in order to maximize the total weight of the satisfied equations.

Let W be the total weight of all equations in S. We consider the following parameterized version of MaxLin2: decide whether there is an assignment satisfying equations of total weight at least Wk, where k is a nonnegative parameter. We prove that this parameterized problem is W[1]-hard even if each equation of S has exactly three variables and every variable appears in exactly three equations and, moreover, each weight w j equals 1 and no two equations have the same left-hand side. We show the tightness of this result by proving that if each equation has at most two variables then the parameterized problem is fixed-parameter tractable. We also prove that if no variable appears in more than two equations then we can maximize the total weight of satisfied equations in polynomial time.


Parameterized complexity Linear equations Finite field 


  1. 1.
    Alon, N., Gutin, G., Kim, E.J., Szeider, S., Yeo, A.: Solving MAX-r-SAT above a tight lower bound. Algorithmica 61(3), 638–655 (2011) MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Alon, N., Gutin, G., Krivelevich, M.: Algorithms with large domination ratio. J. Algorithms 50, 118–131 (2004) MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Crowston, R., Fellows, M., Gutin, G., Jones, M., Rosamond, F., Thomassé, S., Yeo, A.: Simultaneously satisfying linear equations over \(\mathbb {F}_{2}\): MaxLin2 and Max-r-Lin2 parameterized above average. In: Proc. FSTTCS 2011, pp. 229–240 (2011) Google Scholar
  4. 4.
    Crowston, R., Gutin, G., Jones, M., Kim, E.J., Ruzsa, I.: Systems of linear equations over \(\mathbb{F}_{2}\) and problems parameterized above average. In: SWAT 2010. Lect. Notes Comput. Sci., vol. 6139, pp. 164–175 (2010) Google Scholar
  5. 5.
    Crowston, R., Gutin, G., Jones, M., Raman, V., Saurabh, S.: Parameterized complexity of MaxSat above average. In: Proc. LATIN 2012. Lect. Notes Comput. Sci., vol. 7256, pp. 184–194 (2012) Google Scholar
  6. 6.
    Cygan, M., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.O.: On multiway cut parameterized above lower bounds. In: Proc. IPEC 2011. Lect. Notes Comput. Sci., vol. 7112, pp. 1–12 (2011) Google Scholar
  7. 7.
    Downey, R.G., Fellows, M.R., Vardy, A., Whittle, G.: The parameterized complexity of some fundamental problems in coding theory. SIAM J. Comput. 29(2), 545–570 (1999) MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Guo, J., Gramm, J., Hüffner, F., Niedermeier, R., Wernicke, S.: Compression based fixed-parameter algorithms for feedback vertex set and edge bipartization. J. Comput. Syst. Sci. 72(8), 1386–1396 (2006) zbMATHCrossRefGoogle Scholar
  9. 9.
    Gutin, G., Kim, E.J., Szeider, S., Yeo, A.: A probabilistic approach to problems parameterized above or below tight bounds. J. Comput. Syst. Sci. 77, 422–429 (2011) MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Håstad, J.: Some optimal inapproximability results. J. ACM 48, 798–859 (2001) MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Kim, E.J., Williams, R.: Improved parameterized algorithms for above average constraint satisfaction. In: Proc. IPEC 2011. Lect. Notes Comput. Sci., vol. 7112, pp. 118–131 (2011) Google Scholar
  12. 12.
    Kratsch, S., Wahlström, M.: Compression via matroids: a randomized polynomial kernel for odd cycle transversal. In: Proc. SODA 2012, pp. 94–103 (2012) Google Scholar
  13. 13.
    Lokshtanov, D., Narayanaswamy, N.S., Raman, V., Ramanujan, M.S., Saurabh, S.: Faster parameterized algorithms using linear programming. Preprint. arXiv:1203.0833v2 [cs.DS]
  14. 14.
    Mahajan, M., Raman, V., Sikdar, S.: Parameterizing above or below guaranteed values. J. Comput. Syst. Sci. 75(2), 137–153 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Rafiey, A.: Private Communication (2011) Google Scholar
  16. 16.
    Raman, V., Ramanujan, M.S., Saurabh, S.: Paths, flowers and vertex cover. In: Proc. ESA 2011. Lect. Notes Comput. Sci., vol. 6942, pp. 382–393 (2011) CrossRefGoogle Scholar
  17. 17.
    Razgon, I., O’Sullivan, B.: Almost 2-SAT is fixed-parameter tractable. J. Comput. Syst. Sci. 75(8), 435–450 (2009) MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Royal HollowayUniversity of LondonEghamUK
  2. 2.University of JohannesburgAuckland ParkSouth Africa

Personalised recommendations