Theory of Computing Systems

, Volume 52, Issue 1, pp 80–94 | Cite as

Time-Bounded Kolmogorov Complexity and Solovay Functions

  • Rupert Hölzl
  • Thorsten Kräling
  • Wolfgang Merkle


A Solovay function is an upper bound g for prefix-free Kolmogorov complexity K that is nontrivial in the sense that g agrees with K, up to some additive constant, on infinitely many places n. We obtain natural examples of computable Solovay functions by showing that for some constant c 0 and all computable functions t such that c 0 nt(n), the time-bounded version K t of K is a Solovay function.

By unifying results of Bienvenu and Downey and of Miller, we show that a right-computable upper bound g of K is a Solovay function if and only if Ω g =∑2g(n) is Martin-Löf random. We obtain as a corollary that the Martin-Löf randomness of the various variants of Chaitin’s Ω extends to the time-bounded case in so far as \(\Omega _{ \textnormal{K}^{t}}\) is Martin-Löf random for any t as above.

As a step in the direction of a characterization of K-triviality in terms of jump-traceability, we demonstrate that a set A is K-trivial if and only if A is O(g(n)−K(n))-jump traceable for all computable Solovay functions g. Furthermore, this equivalence remains true when the universal quantification over all computable Solovay functions in the second statement is restricted either to all functions of the form K t for some function t as above or to a single function K t of this form.

Finally, we investigate into the plain Kolmogorov complexity C and its time-bounded variant C t of initial segments of computably enumerable sets. Our main theorem here asserts that every high c.e. Turing degree contains a c.e. set B such that for any computable function t there is a constant c t >0 such that for all m it holds that C t (Bm)≥c t m, whereas for any nonhigh c.e. set A there is a computable time bound t and a constant c such that for infinitely many m it holds that C t (Am)≤logm+c. By similar methods it can be shown that any high degree contains a set B such that C t (Bm)≥+ m/4. The constructed sets B have low unbounded but high time-bounded Kolmogorov complexity, and accordingly we obtain an alternative proof of the result due to Juedes et al. (Theor. Comput. Sci. 132(1–2):37–70, 1994) that every high degree contains a strongly deep set.


Kolmogorov complexity Solovay function Computational depth Kummer’s gap theorem Traceability High degree 


  1. 1.
    Barmpalias, G., Downey, R., Greenberg, N.: K-trivial degrees and the jump-traceability hierarchy. Proc. Am. Math. Soc. 137(6), 2099–2109 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Barzdin, J.: Complexity of programs to determine whether natural numbers not greater than n belong to a recursively enumerable set. Sov. Math. Dokl. 9, 1251–1254 (1968) zbMATHGoogle Scholar
  3. 3.
    Bennett, C.H.: Logical depth and physical complexity. In: The Universal Turing Machine, 2nd edn. A Half-Century Survey, pp. 207–235. Springer, Berlin (1995) CrossRefGoogle Scholar
  4. 4.
    Bienvenu, L., Downey, R.: Kolmogorov complexity and Solovay functions. In: Proceedings of the 26th International Symposium on Theoretical Aspects of Computer Science (STACS), pp. 147–158 (2009) Google Scholar
  5. 5.
    Cholak, P., Downey, R., Greenberg, N.: Strong jump-traceability I: the computably enumerable case. Adv. Math. 217(5), 2045–2074 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Downey, R., Greenberg, N.: Strong jump-traceability II: K-triviality. Israel J. Math. (2011). doi: 10.1007/s11856-011-0217-z Google Scholar
  7. 7.
    Downey, R.G., Hirschfeldt, D.R.: Algorithmic Randomness and Complexity. Theory and Applications of Computability. Springer, New York (2010) zbMATHCrossRefGoogle Scholar
  8. 8.
    Hölzl, R., Kräling, T., Merkle, W.: Time-bounded Kolmogorov complexity and Solovay functions. In: Proceedings of the 34th International Symposium on Mathematical Foundations of Computer Science, pp. 392–402 (2009) Google Scholar
  9. 9.
    Juedes, D.W., Lathrop, J.I., Lutz, J.H.: Computational depth and reducibility. Theor. Comput. Sci. 132(1–2), 37–70 (1994) MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Kummer, M.: Kolmogorov complexity and instance complexity of recursively enumerable sets. SIAM J. Comput. 25(6), 1123–1143 (1996) MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Kučera, A., Slaman, T.A.: Randomness and recursive enumerability. SIAM J. Comput. 31(1), 199–211 (2001) MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Li, M., Vitányi, P.: An Introduction to Kolmogorov Complexity and Its Applications. Springer, Berlin (2008) zbMATHCrossRefGoogle Scholar
  13. 13.
    Miller, J.S.: The K-degrees, low for K-degrees and weakly low for K-degrees. Notre Dame J. Form. Log. 50(4), 381–391 (2010) CrossRefGoogle Scholar
  14. 14.
    Nies, A.: Computability and Randomness. Oxford University Press, London (2009) zbMATHCrossRefGoogle Scholar
  15. 15.
    Schnorr, C.P.: Process complexity and effective random tests. J. Comput. Syst. Sci. 7, 376–388 (1973) MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Solovay, R.M.: Draft of paper (or series of papers) on Chaitin’s work. Unpublished notes (1975) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Rupert Hölzl
    • 1
  • Thorsten Kräling
    • 2
  • Wolfgang Merkle
    • 2
  1. 1.LIAFACNRS & Université Paris 7Paris Cedex 13France
  2. 2.Institut für InformatikRuprecht-Karls-Universität HeidelbergHeidelbergGermany

Personalised recommendations