Advertisement

Theory of Computing Systems

, Volume 52, Issue 2, pp 285–296 | Cite as

Energy-Efficient Communication in Multi-interface Wireless Networks

  • Stavros Athanassopoulos
  • Ioannis Caragiannis
  • Christos Kaklamanis
  • Evi Papaioannou
Article

Abstract

We study communication problems in wireless networks supporting multiple interfaces. In such networks, two nodes can communicate if they are close enough and share a common interface. The activation of each interface has a cost reflecting the energy consumed when a node uses this interface. We distinguish between the homogeneous and heterogeneous case, depending on whether all nodes have the same activation cost for each interface or not. For the homogeneous case, we present a (3/2+ϵ)-approximation algorithm for the problem of achieving connectivity with minimum activation cost, improving a previous bound of 2. For the heterogeneous case, we show that the connectivity problem is not approximable within a sublogarithmic factor in the number of nodes and present a logarithmic approximation algorithm for a more general problem that models group communication.

Keywords

Wireless networks Energy-efficiency Approximation algorithms 

References

  1. 1.
    Agrawal, A., Klein, P., Ravi, R.: When trees collide: an approximation algorithm for generalized Steiner tree problem on networks. In: Proceedings of the 23rd Annual ACM Symposium on Theory of Computing (STOC 91), pp. 131–144 (1991) Google Scholar
  2. 2.
    Bahl, P., Adya, A., Padhye, J., Walman, A.: Reconsidering wireless systems with multiple radios. Comput. Commun. Rev. 34(5), 39–46 (2004) CrossRefGoogle Scholar
  3. 3.
    Byrka, J., Grandoni, F., Rothvoss, T., Sanità, L.: An improved LP-based approximation for Steiner tree. In: Proceedings of the 42nd ACM Symposium on Theory of Computing (STOC 10), pp. 583–592 (2010) CrossRefGoogle Scholar
  4. 4.
    Cǎlinescu, G., Kapoor, S., Olshevsky, A., Zelikovsky, A.: Network lifetime and power assignment in ad-hoc wireless networks. In: Proceedings of the 11th Annual European Symposium on Algorithms (ESA’03). LNCS, vol. 2832, pp. 114–126. Springer, Berlin (2003) Google Scholar
  5. 5.
    Caragiannis, I., Kaklamanis, C., Kanellopoulos, P.: Energy-efficient wireless network design. Theory Comput. Syst. 39(5), 593–617 (2006) MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Cavalcanti, D., Gossain, H., Agrawal, D.: Connectivity in multi-radio, multi-channel heterogeneous ad hoc networks. In: Proceedings of the IEEE 16th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC 05), pp. 1322–1326. IEEE Press, New York (2005) CrossRefGoogle Scholar
  7. 7.
    D’Angelo, G., Di Stefano, G., Navarra, A.: Minimizing the maximum duty for connectivity in multi-interface networks. In: Proceedings of the 4th International Conference on Combinatorial Optimization and Applications (COCOA 10). LNCS, vol. 6509, pp. 254–267. Springer, Berlin (2010) Google Scholar
  8. 8.
    D’Angelo, G., Di Stefano, G., Navarra, A.: Min-max coverage in multi-interface networks. In: Proceedings of the 37th Conference on Current Trends in Theory and Practice of Computer Science (SOFSEM 11). LNCS, vol. 6543, pp. 190–201. Springer, Berlin (2011) Google Scholar
  9. 9.
    D’Angelo, G., Di Stefano, G., Navarra, A.: Bandwidth constrained multi-interface networks. In: Proceedings of the 37th Conference on Current Trends in Theory and Practice of Computer Science (SOFSEM 11). LNCS, vol. 6543, pp. 202–213. Springer, Berlin (2011) Google Scholar
  10. 10.
    Draves, R., Padhye, J., Zill, B.: Routing in multi-radio, multi-hop wireless mesh networks. In: Proceedings of the 10th Annual International Conference on Mobile Computing and Networking (MobiCom 04), pp. 114–128. ACM, New York (2004) CrossRefGoogle Scholar
  11. 11.
    Feige, U.: A threshold of lnn for approximating set cover. J. ACM 45(4), 634–652 (1998) MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Faragó, A., Basagni, S.: The effect of multi-radio nodes on network connectivity: a graph theoretic analysis. In: Proceedings of the IEEE 19th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC 08). IEEE Press, New York (2008), 5 pages Google Scholar
  13. 13.
    Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24, 296–317 (1995) MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Guha, S., Khuller, S.: Improved methods for approximating node weighted Steiner trees and connected dominating sets. Inf. Comput. 150(1), 57–74 (1999) MathSciNetCrossRefGoogle Scholar
  15. 15.
    Klasing, R., Kosowski, A., Navarra, A.: Cost minimisation in wireless networks with bounded and unbounded number of interfaces. Networks 53(3), 266–275 (2009) MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Kosowski, A., Navarra, A., Pinotti, M.C.: Exploiting multi-interface networks: connectivity and cheapest paths. Wirel. Netw. 16(4), 1063–1073 (2010) CrossRefGoogle Scholar
  17. 17.
    Prömel, H.J., Steger, A.: A new approximation algorithm for the Steiner tree problem with performance ratio 5/3. J. Algorithms 36, 89–101 (2000) MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Raz, R., Safra, S.: A sub-constant error-probability low-degree test, and a sub-constant error-probability PCP characterization of NP. In: Proceedings of the 29th Annual ACM Symposium on the Theory of Computing (STOC 97), pp. 475–484 (1997) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Stavros Athanassopoulos
    • 1
  • Ioannis Caragiannis
    • 1
  • Christos Kaklamanis
    • 1
  • Evi Papaioannou
    • 1
  1. 1.Computer Technology Institute and Press “Diophantus”& Department of Computer Engineering and InformaticsUniversity of PatrasRioGreece

Personalised recommendations