Advertisement

Theory of Computing Systems

, Volume 52, Issue 2, pp 221–270 | Cite as

Parameterized Random Complexity

  • Juan Andrés Montoya
  • Moritz Müller
Article

Abstract

The classes W[P] and W[1] are parameterized analogues of NP in that they can be characterized by machines with restricted existential nondeterminism. These machine characterizations give rise to two natural notions of parameterized randomized algorithms that we call W[P]-randomization and W[1]-randomization. This paper develops the corresponding theory.

Keywords

Parameterized complexity theory Random complexity Probability amplification Derandomization Parameterized counting complexity Uniqueness problems 

Notes

Acknowledgements

We thank again Jörg Flum, the advisor of our PhD Theses. The second author thanks the John Templeton Foundation for its support under Grant #13152, The Myriad Aspects of Infinity and the FWF (Austrian Research Fund) for its support under Grant P23989-N13.

References

  1. 1.
    Ajtai, M., Komlós, J., Szemerédi, E.: Deterministic simulation in LOGSPACE. In: Proceedings of the 9th Annual ACM Symposium on Theory of Computing (STOC’87), pp. 132–140 (1987) Google Scholar
  2. 2.
    Alekhnovich, M., Razborov, A.A.: Resolution is not automatizable unless W[P] is tractable. In: Proceedings of the 41th IEEE Symposium on Foundations of Computer Science (FOCS’01), pp. 210–219 (2001) Google Scholar
  3. 3.
    Alon, N., Yuster, R., Zwick, U.: Color-coding. J. ACM 42, 844–856 (1995) MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Arora, S., Barak, B.: Computational Complexity: A Modern Perspective. Cambridge University Press, Cambridge (2009) zbMATHCrossRefGoogle Scholar
  5. 5.
    Arvind, V., Raman, V.: Approximation algorithms for some parameterized counting problems. In: Bose, I., Morin, P. (eds.) Proceedings of the 13th International Symposium on Algorithms and Computation. LNCS, vol. 2518, pp. 453–464. Springer, Berlin (2002) Google Scholar
  6. 6.
    Blass, A., Gurevich, Y.: On the unique satisfiability problem. Inf. Comput. 55, 80–88 (1982) MathSciNetzbMATHGoogle Scholar
  7. 7.
    Bremaud, P.: Markov Chains, Gibbs Fields, Monte Carlo Simulation and Qeues. Springer Texts in Applied Mathematics, vol. 31 (1999) Google Scholar
  8. 8.
    Brent, R.P., Kuck, D.J., Maruyama, K.: The parallel evaluation of arithmetic expressions without division. IEEE Trans. Comput. C-22, 532–534 (1973) MathSciNetCrossRefGoogle Scholar
  9. 9.
    Brent, R.P.: The parallel evaluation of general arithmetic expressions. J. ACM 21(2), 201–206 (1974) MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Cai, L.: Random separation: a new method for solving fixed-cardinality optimization problems. In: Proceedings of the 2nd International Workshop on Parameterized and Exact Computation (IWPEC’06). LNCS, vol. 4169, pp. 239–250 (2006) CrossRefGoogle Scholar
  11. 11.
    Cai, L., Chen, J., Downey, R.G., Fellows, M.R.: On the structure of parameterized problems in NP. Inf. Comput. 123, 38–49 (1995) MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Calabro, C., Impagliazzo, R., Kabanets, V., Paturi, R.: The complexity of unique k-SAT: an isolation lemma for k-CNFs. In: Proceedings of the 18th IEEE Conference on Computational Complexity (CCC’03), pp. 135–141 (2003) Google Scholar
  13. 13.
    Chang, R., Kadin, J.: On computing boolean connectives of characteristic functions. Theory Comput. Syst. 28(3), 173–198 (1995) MathSciNetzbMATHGoogle Scholar
  14. 14.
    Chang, R., Kadin, J., Rohatgi, P.: On unique satisfiability and the threshold behavior of randomized reductions. J. Comput. Syst. Sci. 50(3), 359–373 (1995) MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Chari, S., Rohatgi, P., Srinivasan, A.: Randomness-optimal unique element isolation, with applications to perfect matching and related problems. In: Proceedings of the Twenty-Fifth ACM Symposium on Theory of Computing (STOC’93), pp. 458–467 (1993) CrossRefGoogle Scholar
  16. 16.
    Chen, J.: Randomized disposal of unknowns and implicitly enforced bounds on parameters. In: Proceedings of the 3rd International Workshop on Parameterized and Exact Computation (IWPEC’08), Victoria. LNCS, vol. 5018, pp. 1–8 (2008) CrossRefGoogle Scholar
  17. 17.
    Chen, J., Lu, S., Sze, S.-H., Zhang, F.: Improved algorithms for path, matching and packing problems. In: Proceedings of the 18th ACM-SIAM Symposium on Discrete Algorithms (SODA’07), pp. 298–307 (2007) Google Scholar
  18. 18.
    Chen, Y.: Model-checking problems, machines and parameterized complexity. Dissertation, Albert-Ludwigs-Universität Freiburg i.Br. (2004) Google Scholar
  19. 19.
    Chen, Y., Flum, J.: Subexponential time and fixed-parameter tractability: exploiting the miniaturization mapping. In: Proceedings of the 21st International Workshop on Computer Science Logic (CSL’07). LNCS, vol. 4646, pp. 389–404 (2007) Google Scholar
  20. 20.
    Chen, Y., Flum, J.: The parameterized complexity of maximality and minimality problems. Ann. Pure Appl. Log. 151(1), 22–61 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Chen, Y., Grohe, M.: An isomorphism between subexponential and parameterized complexity theory. SIAM J. Comput. 37(4), 1228–1258 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Chen, Y., Flum, J., Grohe, M.: Bounded nondeterminism and alternation in parameterized complexity theory. In: Proceedings of the 18th IEEE Conference on Computational Complexity (CCC’03), pp. 13–29 (2003) Google Scholar
  23. 23.
    Chen, Y., Flum, J., Grohe, M.: Machine-based methods in parameterized complexity theory. Theor. Comput. Sci. 339, 167–199 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Chen, Y., Flum, J., Müller, M.: Lower bounds for kernelizations and other preprocessing procedures. Theory Comput. Syst. 48(4), 803–839 (2011) MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Cook, S.A., Reckhoff, R.A.: Time bounded random access machines. J. Comput. Syst. Sci. 7, 354–375 (1973) zbMATHCrossRefGoogle Scholar
  26. 26.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Berlin (1999) CrossRefGoogle Scholar
  27. 27.
    Downey, R.G., Fellows, M.R.: Parameterized complexity after almost ten years: review and open questions. In: Proceedings of Combinatorics, Computation and Logic, DMTCS’99 and CATS’99. Australian Computer Science Communications, vol. 21, pp. 1–33. Springer, Berlin (1999) Google Scholar
  28. 28.
    Downey, R.G., Fellows, M.R., Regan, K.W.: Parameterized circuit complexity and the W hierarchy. Theor. Comput. Sci. 191(1–2), 97–115 (1998) MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Downey, R.G., Estivill-Castro, V., Fellows, M.R., Prietoc, E., Rosamond, F.A.: Cutting up is hard to do: the parameterised complexity of k-cut and related problems. In: Harland, J. (ed.) Proceeding of the Australasian Theory Symposium (CATS’03). Electronic Notes in Theoretical Computer Science, vol. 78, pp. 209–222 (2003) Google Scholar
  30. 30.
    Ebbinghaus, H.D.: Extended logics: the general framework. In: Barwise, J., Feferman, S. (eds.) Model-Theoretical Logics, pp. 25–76. Springer, Berlin (1985) Google Scholar
  31. 31.
    Eickmeyer, K., Grohe, M.: Randomisation and derandomisation in descriptive complexity theory. In: Proceedings of the 24th International Workshop Computer Science Logic (CSL’10) (2010) Google Scholar
  32. 32.
    Eickmeyer, K., Grohe, M., Grübner, M.: Approximisation of W[P]-complete minimisation problems is hard. In: Proceedings 23rd IEEE Conference on Computational Complexity (CCC’08), pp. 8–18 (2008) Google Scholar
  33. 33.
    Fellows, M.R., Koblitz, N.: Fixed-parameter complexity and cryptography. In: Proceedings of the 10th International Symposium on Applied Algebra, Algebraic Algorithms and Error-Correcting Codes (AAECC’93). LNCS, vol. 673, pp. 121–131. Springer, Berlin (1993) CrossRefGoogle Scholar
  34. 34.
    Flum, J., Grohe, M.: Fixed-parameter tractability, definability, and model checking. SIAM J. Comput. 31, 113–145 (2001) MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Flum, J., Grohe, M.: The parameterized complexity of counting problems. SIAM J. Comput. 33(4), 892–922 (2004) MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Flum, J., Grohe, M.: Model-checking problems as a basis for parameterized intractability. Log. Methods Comput. Sci. 1(1) (2005). Conference version in Proceedings of the 19th IEEE Symposium on Logic in Computer Science (LICS’04), pp. 388–397 (2004) Google Scholar
  37. 37.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Berlin (2006) Google Scholar
  38. 38.
    Flum, J., Grohe, M., Weyer, M.: Bounded fixed-parameter tractability and log2 n nondeterministic bits. J. Comput. Syst. Sci. 72, 34–71 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Goldreich, O.: Randomized methods in computation—lecture notes (2001); available at http://www.wisdom.weizmann.ac.il/~oded/homepage.html
  40. 40.
    Goldreich, O.: Computational Complexity: A Conceptual Perspective. Cambridge University Press, Cambridge (2008) zbMATHCrossRefGoogle Scholar
  41. 41.
    Grandjean, E., Kleine-Büning, H.: SAT-problems and reductions with respect to the number of variables. J. Log. Comput. 7(4), 457–471 (1997) zbMATHCrossRefGoogle Scholar
  42. 42.
    Grohe, M.: The complexity of generalized model-checking problems. Unpublished manuscript (2001) Google Scholar
  43. 43.
    Hoory, S., Linial, N., Wigderson, A.: Expander graphs and their applications. Bull. Am. Math. Soc. 43(4), 439–561 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    Jerrum, M.: Counting, Sampling and Intergrating: Algorithms and Complexity. Birkhäuser, Basel (2003) zbMATHCrossRefGoogle Scholar
  45. 45.
    Johnson, D.S., Papadimitriou, C.H., Yannakakis, M.: On generating all maximal independent sets. Inf. Process. Lett. 27, 119–123 (1988) MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    Liu, Y., Lu, S., Chen, J., Sze, S.-H.: Greedy localization and color-coding: improved matching and packing algorithms. In: Proceedings of the 2nd International Workshop on Parameterized and Exact Computation (IWPEC’06). LNCS, vol. 4169, pp. 84–95 (2006) CrossRefGoogle Scholar
  47. 47.
    Luby, M., Wigderson, A.: Pairwise independence and derandomization. Found. Trends Theor. Comput. Sci. 1(4), 237–301 (2005) MathSciNetCrossRefGoogle Scholar
  48. 48.
    Marx, D.: Parameterized complexity of constraint satisfaction problems. Comput. Complex. 14(2), 153–183 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    Montoya, J.A.: On parameterized counting. Dissertation, Albert-Ludwigs-Universität Freiburg i.Br. (2008) Google Scholar
  50. 50.
    Montoya, J.A.: The parameterized complexity of probability amplification. Inf. Process. Lett. 109(1), 46–53 (2008) MathSciNetCrossRefGoogle Scholar
  51. 51.
    Montoya, J.A.: On the parameterized complexity of approximate counting. RAIRO Theor. Inform. Appl. doi: 10.1051/ita/2011007
  52. 52.
    Müller, M.: Randomized approximations of parameterized counting problems. In: Proceedings of the 2nd International Workshop on Parameterized and Exact Computation (IWPEC’06). LNCS, vol. 4169, pp. 50–59 (2006) CrossRefGoogle Scholar
  53. 53.
    Müller, M.: Parameterized derandomization. In: Proceedings of the 3rd International Workshop on Parameterized and Exact Computation (IWPEC’08). LNCS, vol. 5018, pp. 148–159 (2008) CrossRefGoogle Scholar
  54. 54.
    Müller, M.: Valiant-Vazirani lemmata for various logics. Electronic Colloquium on Computational Complexity (ECCC’08), Report TR08-063 (2008); available at http://eccc.hpi-web.de/eccc-reports/2008/TR08-063/index.html
  55. 55.
    Müller, M.: Parameterized randomization. Dissertation, Albert-Ludwigs-Universität Freiburg i.Br. (2009) Google Scholar
  56. 56.
    Naor, J., Naor, M.: Small-bias probability spaces: efficient constructions and applications. SIAM J. Comput. 22, 213–223 (1993) CrossRefGoogle Scholar
  57. 57.
    Naor, M., Schulman, L., Srinivasan, A.: Splitters and near-optimal derandomization. In: Proceedings of the 39th IEEE Symposium on Foundations of Computer Science (FOCS’95), pp. 182–190 (1995) Google Scholar
  58. 58.
    Ogiwara, M., Toda, S.: Counting classes are at least as hard as the polynomial-time hierarchy. SIAM J. Comput. 21(2), 316–328 (1992) MathSciNetzbMATHCrossRefGoogle Scholar
  59. 59.
    Regan, K.W.: Efficient reductions from NP to parity using error-correcting codes (preliminary version). State University of New York at Buffalo, Technical Report 93-24 (1993); available at http://www.cse.buffalo.edu/tech-reports/
  60. 60.
    Reingold, O., Vadhan, S., Wigderson, A.: Entropy waves, the zig-zag graph product, and new constant degree expanders. Ann. Math. 155, 157–187 (2002) MathSciNetzbMATHCrossRefGoogle Scholar
  61. 61.
    Sipser, M.: A complexity theoretic approach to randomness. In: Proceedings of the 15. ACM Symposium on Theory of Computing (STOC’83), pp. 330–335 (1983) Google Scholar
  62. 62.
    Stockmeyer, L.: On approximation algorithms for #P. SIAM J. Comput. 14(4), 849–861 (1985) MathSciNetzbMATHCrossRefGoogle Scholar
  63. 63.
    Toda, S.: PP is as hard as the polynomial hierarchy. SIAM J. Comput. 20(5), 865–877 (1991) MathSciNetzbMATHCrossRefGoogle Scholar
  64. 64.
    Valiant, L.G.: The complexity of enumeration and reliability problems. SIAM J. Comput. 8(3), 410–421 (1979) MathSciNetzbMATHCrossRefGoogle Scholar
  65. 65.
    Valiant, L.G., Vazirani, V.V.: NP is as easy as detecting unique solutions. In: Proceedings of the 17th ACM Symposium on Theory of Computing (STOC’85), pp. 458–463 (1985) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Escuela de MatemáticasUniversidad industrial de SantanderBucaramangaColombia
  2. 2.Kurt Gödel Research CenterUniversity of ViennaViennaAustria

Personalised recommendations