Theory of Computing Systems

, Volume 50, Issue 4, pp 675–693 | Cite as

Parameterizing by the Number of Numbers

  • Michael R. Fellows
  • Serge Gaspers
  • Frances A. Rosamond
Article

Abstract

The usefulness of parameterized algorithmics has often depended on what Niedermeier has called “the art of problem parameterization”. In this paper we introduce and explore a novel but general form of parameterization: the number of numbers. Several classic numerical problems, such as Subset Sum, Partition, 3-Partition, Numerical 3-Dimensional Matching, and Numerical Matching with Target Sums, have multisets of integers as input. We initiate the study of parameterizing these problems by the number of distinct integers in the input. We rely on an FPT result for Integer Linear Programming Feasibility to show that all the above-mentioned problems are fixed-parameter tractable when parameterized in this way. In various applied settings, problem inputs often consist in part of multisets of integers or multisets of weighted objects (such as edges in a graph, or jobs to be scheduled). Such number-of-numbers parameterized problems often reduce to subproblems about transition systems of various kinds, parameterized by the size of the system description. We consider several core problems of this kind relevant to number-of-numbers parameterization. Our main hardness result considers the problem: given a non-deterministic Mealy machine M (a finite state automaton outputting a letter on each transition), an input word x, and a census requirement c for the output word specifying how many times each letter of the output alphabet should be written, decide whether there exists a computation of M reading x that outputs a word y that meets the requirement c. We show that this problem is hard for W[1]. If the question is whether there exists an input word x such that a computation of M on x outputs a word that meets c, the problem becomes fixed-parameter tractable.

Keywords

Parameterized complexity Problem parameterization Variety of a multiset Numerical problems 

References

  1. 1.
    Alon, N., Azar, Y., Woeginger, G.J., Yadid, T.: Approximation schemes for scheduling on parallel machines. J. Sched. 1, 55–66 (1998) MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Bard, G.V.: Algebraic Cryptanalysis. Springer, Berlin (2009) MATHCrossRefGoogle Scholar
  3. 3.
    Bazgan, C.: Schémas d’approximation et complexité paramétrée. Master’s thesis, Université Paris Sud (1995) Google Scholar
  4. 4.
    Betzler, N., Fellows, M.R., Guo, J., Niedermeier, R., Rosamond, F.A.: Fixed-parameter algorithms for Kemeny rankings. Theor. Comput. Sci. 410(45), 4554–4570 (2009) MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Chrobak, M., Dürr, C., Hurand, M., Robert, J.: Algorithms for temperature-aware task scheduling in microprocessor systems. In: Fleischer, R., Jinhui, X. (eds.) AAIM 2008. Lecture Notes in Computer Science, vol. 5034, pp. 120–130. Springer, Berlin (2008) Google Scholar
  6. 6.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, New York (1999) CrossRefGoogle Scholar
  7. 7.
    Fellows, M.R., Gaspers, S., Rosamond, F.A.: Parameterizing by the number of numbers. In: Raman, V., Saurabh, S. (eds.) IPEC 2010. Lecture Notes in Computer Science, vol. 6478, pp. 123–134. Springer, Berlin (2010) Google Scholar
  8. 8.
    Fellows, M.R., Hermelin, D., Rosamond, F., Vialette, S.: On the parameterized complexity of multiple-interval graph problems. Theor. Comput. Sci. 410(1), 53–61 (2009) MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Fellows, M.R., Koblitz, N.: Fixed-parameter complexity and cryptography. In: Cohen, G.D., Mora, T., Moreno, O. (eds.) AAECC 1993. Lecture Notes in Computer Science, vol. 673, pp. 121–131. Springer, Berlin (1993) Google Scholar
  10. 10.
    Fellows, M.R., Lokshtanov, D., Misra, N., Mnich, M., Rosamond, F.A., Saurabh, S.: The complexity ecology of parameters: An illustration using bounded max leaf number. Theory Comput. Syst. 45(4), 822–848 (2009) MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Fellows, M.R., Lokshtanov, D., Misra, N., Rosamond, E.A., Saurabh, S.: Graph layout problems parameterized by vertex cover. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. Lecture Notes in Computer Science, vol. 5369, pp. 294–305. Springer, Berlin (2008) Google Scholar
  12. 12.
    Fiala, J., Golovach, P.A., Kratochvíl, J.: Parameterized complexity of coloring problems: Treewidth versus vertex cover. Theor. Comput. Sci. 412(23), 2513–2523 (2011) MATHCrossRefGoogle Scholar
  13. 13.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Computer Science. An EATCS Series, vol. XIV. Springer, Berlin (2006) Google Scholar
  14. 14.
    Frank, A., Tardos, É.: An application of simultaneous diophantine approximation in combinatorial optimization. Combinatorica 7(1), 49–65 (1987) MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Gaspers, S., Liedloff, M., Stein, M.J., Suchan, K.: Complexity of splits reconstruction for low-degree trees. In: Kratochvíl, J. (ed.) WG 2011. Lecture Notes in Computer Science, vol. 6986 pp. 167–178. Springer, Berlin (2011) Google Scholar
  16. 16.
    Gramm, J., Niedermeier, R., Rossmanith, P.: Fixed-parameter algorithms for closest string and related problems. Algorithmica 37(1), 25–42 (2003) MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Kannan, R.: Minkowski’s convex body theorem and integer programming. Math. Oper. Res. 12(3), 415–440 (1987) MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Knuth, D.E.: The Art of Computer Programming, Volume III: Sorting and Searching. Addison-Wesley, Reading (1973) Google Scholar
  19. 19.
    Komusiewicz, C., Niedermeier, R., Uhlmann, J.: Deconstructing intractability—a multivariate complexity analysis of interval constrained coloring. J. Discrete Algorithms 9(1), 137–151 (2011) MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Lenstra, H.W.: Integer programming with a fixed number of variables. Math. Oper. Res. 8(4), 538–548 (1983) MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Mealy, G.H.: A method for synthesizing sequential circuits. Bell Syst. Tech. J. 34(5), 1045–1079 (1955) MathSciNetGoogle Scholar
  22. 22.
    Munro, I., Spira, P.M.: Sorting and searching in multisets. SIAM J. Comput. 5(1), 1–8 (1976) MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series in Mathematics and Its Applications. Oxford University Press, Oxford (2006) MATHCrossRefGoogle Scholar
  24. 24.
    Niedermeier, R.: Reflections on multivariate algorithmics and problem parameterization. In: Marion, J.-Y., Schwentick, T. (eds.) STACS 2010. LIPIcs, vol. 5, pp. 17–32. Schloss Dagstuhl—Leibniz-Zentrum fuer Informatik, Dagstuhl (2010) Google Scholar
  25. 25.
    Parikh, R.J.: On context-free languages. J. ACM 13(4), 570–581 (1966) MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Pietrzak, K.: On the parameterized complexity of the fixed alphabet shortest common supersequence and longest common subsequence problems. J. Comput. Syst. Sci. 67(4), 757–771 (2003) MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Roche, E., Schabes, Y.: Finite-state language processing. The MIT Press, Cambridge (1997) Google Scholar
  28. 28.
    Savage, J.E.: Models of Computation—Exploring the Power of Computing. Addison-Wesley, Reading (1998) MATHGoogle Scholar
  29. 29.
    Sen, S., Gupta, N.: Distribution-sensitive algorithms. Nord. J. Comput. 6, 194–211 (1999) MathSciNetMATHGoogle Scholar
  30. 30.
    Sontag, E.: Mathematical Control Theory: Deterministic Finite Dimensional Systems, 2nd edn. Springer, Berlin (1998) MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Michael R. Fellows
    • 1
  • Serge Gaspers
    • 2
  • Frances A. Rosamond
    • 1
  1. 1.School of Engineering and ITCharles Darwin UniversityDarwinAustralia
  2. 2.Institute of Information SystemsVienna University of TechnologyViennaAustria

Personalised recommendations