Theory of Computing Systems

, Volume 50, Issue 4, pp 621–640 | Cite as

Effective Versions of Local Connectivity Properties

  • Dale Daniel
  • Timothy H. McNichollEmail author


We investigate, and prove equivalent, effective versions of local connectivity and uniformly local arcwise connectivity for connected and computably compact subspaces of Euclidean space. We also prove that Euclidean continua that are computably compact and effectively locally connected are computably arcwise connected.


Computable topology Effective local connectivity Peano continua 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bishop, E., Bridges, D.: Constructive Analysis. Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical Sciences), vol. 279. Springer, Berlin (1985) zbMATHCrossRefGoogle Scholar
  2. 2.
    Brattka, V.: Plottable real number functions and the computable graph theorem. SIAM J. Comput. 38(1), 303–328 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Brattka, V., Weihrauch, K.: Computability on subsets of Euclidean space. I. Closed and compact subsets. Theor. Comput. Sci. 219(1-2), 65–93 (1999). Computability and complexity in analysis (Castle Dagstuhl, 1997) MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Davis, M.: Computability and Unsolvability. McGraw-Hill Series in Information Processing and Computers. McGraw-Hill, New York (1958) zbMATHGoogle Scholar
  5. 5.
    Ershov, Y.L., Goncharov, S.S., Nerode, A., Remmel, J.B., Marek, V.W. (eds.): Handbook of Recursive Mathematics, vol. 2. Studies in Logic and the Foundations of Mathematics, vol. 2, vol. 139. North-Holland, Amsterdam (1998), Recursive algebra, analysis and combinatorics zbMATHGoogle Scholar
  6. 6.
    Feferman, S.: Turing’s thesis. Not. Am. Math. Soc. 53(10), 1200–1206 (2006) MathSciNetzbMATHGoogle Scholar
  7. 7.
    Gu, X., Lutz, J., Mayordomo, E.: Curves that must be retraced. In: Bauer, A., Dillhage, R., Hertling, P., Ko, K., Rettinger, R. (eds.) CCA 2009, Sixth International Conference on Computability and Complexity in Analysis. Informatik Berichte, vol. 353, pp. 147–158. Fern-Universität in Hagen, Hagen (2009) Google Scholar
  8. 8.
    Hahn, H.: Mengentheoretische characterisierung der stetigen kurven. Sitzungsber. Akad. Wiss. Wien, Abt. IIa 123, 2433–2489 (1914) Google Scholar
  9. 9.
    Hocking, J.G., Young, G.S.: Topology, 2nd edn. Dover, New York (1988) zbMATHGoogle Scholar
  10. 10.
    Kalantari, I., Welch, L.: Point-free topological spaces, functions and recursive points; filter foundation for recursive analysis. I. Ann. Pure Appl. Log. 93(1–3), 125–151 (1998) MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Kalantari, I., Welch, L.: Recursive and nonextendible functions over the reals; filter foundation for recursive analysis. II. Ann. Pure Appl. Log. 98(1-3), 87–110 (1999) MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Mazurkiewicz, S.: Sur les lignes de Jordan. Fundam. Math. 1, 166–209 (1920) Google Scholar
  13. 13.
    Miller, J.: Effectiveness for embedded spheres and balls. In: Brattka, V., Schröder, M., Weihrauch, K. (eds.) CCA 2002, Computability and Complexity in Analysis. Electronic Notes in Computer Science, vol. 66, pp. 127–138. Elsevier, Amsterdam (2002) Google Scholar
  14. 14.
    Pour-El, M.B., Richards, J.I.: Computability in Analysis and Physics. Perspectives in Mathematical Logic. Springer, Berlin (1989) zbMATHGoogle Scholar
  15. 15.
    Weihrauch, K.: Computable Analysis. Texts in Theoretical Computer Science. An EATCS Series. Springer, Berlin (2000) zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of MathematicsLamar UniversityBeaumontUSA

Personalised recommendations