Advertisement

Theory of Computing Systems

, Volume 51, Issue 2, pp 179–195 | Cite as

On Optimal Heuristic Randomized Semidecision Procedures, with Applications to Proof Complexity and Cryptography

  • Edward A. Hirsch
  • Dmitry Itsykson
  • Ivan Monakhov
  • Alexander Smal
Article

Abstract

The existence of an optimal propositional proof system is a major open question in proof complexity; many people conjecture that such systems do not exist. Krajíček and Pudlák (J. Symbol. Logic 54(3):1063, 1989) show that this question is equivalent to the existence of an algorithm that is optimal on all propositional tautologies. Monroe (Theor. Comput. Sci. 412(4–5):478, 2011) recently presented a conjecture implying that such an algorithm does not exist.

We show that if one allows errors, then such optimal algorithms do exist. The concept is motivated by the notion of heuristic algorithms. Namely, we allow an algorithm, called a heuristic acceptor, to claim a small number of false “theorems” and err with bounded probability on other inputs. The amount of false “theorems” is measured according to a polynomial-time samplable distribution on non-tautologies. Our result remains valid for all recursively enumerable languages and can also be viewed as the existence of an optimal weakly automatizable heuristic proof system. The notion of a heuristic acceptor extends the notion of a classical acceptor; in particular, an optimal heuristic acceptor for any distribution simulates every classical acceptor for the same language.

We also note that the existence of a co-NP-language L with a polynomial-time samplable distribution on \(\overline{L}\) that has no polynomial-time heuristic acceptors is equivalent to the existence of an infinitely-often one-way function.

Keywords

Propositional proof complexity Optimal algorithm i.o. one-way 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alekhnovich, M., Ben-Sasson, E., Razborov, A.A., Wigderson, A.: Pseudorandom generators in propositional proof complexity. Technical Report 00-023, Electronic Colloquium on Computational Complexity (2000). Extended abstract appears in Proceedings of FOCS-2000 Google Scholar
  2. 2.
    Bogdanov, A., Trevisan, L.: Average-case complexity. Found. Trends Theor. Comput. Sci. 2(1), 1–106 (2006) CrossRefMathSciNetGoogle Scholar
  3. 3.
    Cook, S.A., Krajíček, J.: Consequences of the provability of NPP/poly. J. Symb. Log. 72(4), 1353–1371 (2007) zbMATHCrossRefGoogle Scholar
  4. 4.
    Cook, S.A., Reckhow, R.A.: The relative efficiency of propositional proof systems. J. Symb. Log. 44(1), 36–50 (1979) zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Fortnow, L., Santhanam, R.: Hierarchy theorems for probabilistic polynomial time. In: Proceedings of the 45th IEEE Symposium on Foundations of Computer Science, pp. 316–324 (2004) CrossRefGoogle Scholar
  6. 6.
    Fortnow, L., Santhanam, R.: Recent work on hierarchies for semantic classes. SIGACT News 37(3), 36–54 (2006) CrossRefGoogle Scholar
  7. 7.
    Grigoriev, D., Hirsch, E.A., Pervyshev, K.: A complete public-key cryptosystem. Groups, Complexity, Cryptology 1(1), 1–12 (2009) zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Hirsch, E.A., Itsykson, D.M.: An infinitely-often one-way function based on an average-case assumption. St. Petersburg Math. J. 21(3), 459–468 (2010) zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Håstad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999) zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Harnik, D., Kilian, J., Naor, M., Reingold, O., Rosen, A.: On robust combiners for oblivious transfer and other primitives. In: Proc. of EUROCRYPT-2005 (2005) Google Scholar
  11. 11.
    Itsykson, D.M.: Structural complexity of AvgBPP. Ann. Pure Appl. Log. 162(3), 213–223 (2010) zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Krajíček, J., Pudlák, P.: Propositional proof systems, the consistency of first order theories and the complexity of computations. J. Symb. Log. 54(3), 1063–1079 (1989) zbMATHCrossRefGoogle Scholar
  13. 13.
    Krajíček, J.: On the weak pigeonhole principle. Fundam. Math. 170(1–3), 123–140 (2001) zbMATHCrossRefGoogle Scholar
  14. 14.
    Krajíček, J.: Tautologies from pseudorandom generators. Bull. Symb. Log. 7(2), 197–212 (2001) zbMATHCrossRefGoogle Scholar
  15. 15.
    Levin, L.A.: Universal sequential search problems. Probl. Inf. Transm. 9, 265–266 (1973) Google Scholar
  16. 16.
    Levin, L.A.: One-way functions and pseudorandom generators. Combinatorica 7, 357–363 (1987) zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    McDiarmid, C.: In: Concentration. Algorithms and Combinatorics, vol. 16, pp. 195–248. Springer, Berlin (1998) Google Scholar
  18. 18.
    Messner, J.: On optimal algorithms and optimal proof systems. In: Proceedings of the 16th Symposium on Theoretical Aspects of Computer Science. Lecture Notes in Computer Science, vol. 1563, pp. 361–372 (1999) Google Scholar
  19. 19.
    Monroe, H.: Speedup for natural problems and noncomputability. Theor. Comput. Sci. 412(4–5), 478–481 (2011) zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Pervyshev, K.: On heuristic time hierarchies. In: Proceedings of the 22nd IEEE Conference on Computational Complexity, pp. 347–358 (2007) Google Scholar
  21. 21.
    Pudlák, P.: On reducibility and symmetry of disjoint NP pairs. Theor. Comput. Sci. 295(1–3), 323–339 (2003) zbMATHCrossRefGoogle Scholar
  22. 22.
    Razborov, A.A.: On provably disjoint NP-pairs. Technical Report 94-006, Electronic Colloquium on Computational Complexity (1994) Google Scholar
  23. 23.
    Sadowski, Z.: On an optimal deterministic algorithm for SAT. In: Proceedings of CSL’98. Lecture Notes in Computer Science, vol. 1584, pp. 179–187. Springer, Berlin (1999) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Edward A. Hirsch
    • 1
  • Dmitry Itsykson
    • 1
  • Ivan Monakhov
    • 1
  • Alexander Smal
    • 1
  1. 1.Steklov Institute of Mathematics at St. PetersburgSt. PetersburgRussia

Personalised recommendations