Theory of Computing Systems

, Volume 51, Issue 2, pp 196–228

# Representing Hyper-arithmetical Sets by Equations over Sets of Integers

• Artur Jeż
• Alexander Okhotin
Open Access
Article

## Abstract

Systems of equations with sets of integers as unknowns are considered. It is shown that the class of sets representable by unique solutions of equations using the operations of union and addition, defined as S+T={m+nmS,nT}, and with ultimately periodic constants is exactly the class of hyper-arithmetical sets. Equations using addition only can represent every hyper-arithmetical set under a simple encoding. All hyper-arithmetical sets can also be represented by equations over sets of natural numbers equipped with union, addition and subtraction $$S \mathop {\mbox {-^{\hspace {-.5em}\cdot }\,\,}}T=\{m-n \mid m \in S, n \in T, m \geq n\}$$. Testing whether a given system has a solution is $$\varSigma ^{1}_{1}$$-complete for each model. These results, in particular, settle the expressive power of the most general types of language equations, as well as equations over subsets of free groups.

## Keywords

Language equations Computability Arithmetical hierarchy Hyper-arithmetical hierarchy

## References

1. 1.
Aczel, P.: An introduction to inductive definitions. In: Barwise, J. (ed.) Handbook of Mathematical Logic, pp. 739–783. North-Holland, Amsterdam (1977)
2. 2.
d’Alessandro, F., Sakarovitch, J.: The finite power property in free groups. Theor. Comput. Sci. 293(1), 55–82 (2003)
3. 3.
Anisimov, A.V.: Languages over free groups. In: Mathematical Foundations of Computer Science (MFCS 1975), Mariánské Lázně, September 1–5, 1975. LNCS, vol. 32, pp. 167–171 (1975) Google Scholar
4. 4.
Ginsburg, S., Rice, H.G.: Two families of languages related to ALGOL. J. ACM 9, 350–371 (1962)
5. 5.
Halpern, J.Y.: Presburger arithmetic with unary predicates is $$\varPi ^{1}_{1}$$ complete. J. Symb. Log. 56(2), 637–642 (1991)
6. 6.
Jeż, A.: Conjunctive grammars can generate non-regular unary languages. Int. J. Found. Comput. Sci. 19(3), 597–615 (2008)
7. 7.
Jeż, A., Okhotin, A.: Conjunctive grammars over a unary alphabet: undecidability and unbounded growth. Theory Comput. Syst. 46(1), 27–58 (2010)
8. 8.
Jeż, A., Okhotin, A.: Complexity of equations over sets of natural numbers. Theory Comput. Syst. 48(2), 319–342 (2011)
9. 9.
Jeż, A., Okhotin, A.: On the computational completeness of equations over sets of natural numbers. In: 35th International Colloquium on Automata, Languages and Programming (ICALP 2008), Reykjavik, Iceland, July 7–11, 2008. LNCS, vol. 5126, pp. 63–74 (2008) Google Scholar
10. 10.
Jeż, A., Okhotin, A.: Equations over sets of natural numbers with addition only. In: STACS 2009, Freiburg, Germany, 26–28 February 2009, pp. 577–588 (2009) Google Scholar
11. 11.
Jeż, A., Okhotin, A.: One-nonterminal conjunctive grammars over a unary alphabet. Theory Comput. Syst. 49(2), 319–342 (2011)
12. 12.
Jeż, A., Okhotin, A.: Least and greatest solutions of equations over sets of integers. In: Mathematical Foundations of Computer Science (MFCS 2010), Brno, Czech Republic, 23–27 August 2010. LNCS, vol. 6281, pp. 441–452 (2010)
13. 13.
Kunc, M.: The power of commuting with finite sets of words. Theory Comput. Syst. 40(4), 521–551 (2007)
14. 14.
Kunc, M.: What do we know about language equations? In: Developments in Language Theory (DLT 2007), Turku, Finland, July 3–6, 2007. LNCS, vol. 4588, pp. 23–27 (2007)
15. 15.
Lehtinen, T., Okhotin, A.: On equations over sets of numbers and their limitations. Int. J. Found. Comput. Sci. 22(2), 377–393 (2011)
16. 16.
Lehtinen, T., Okhotin, A.: On language equations XXK=XXL and XM=N over a unary alphabet. In: Developments in Language Theory (DLT 2010), London, Ontario, Canada, 17–20 August 2010. LNCS, vol. 6224, pp. 291–302 (2010)
17. 17.
McKenzie, P., Wagner, K.: The complexity of membership problems for circuits over sets of natural numbers. Comput. Complex. 16(3), 211–244 (2007)
18. 18.
Moschovakis, Y.: Elementary Induction on Abstract Structures. North-Holland, Amsterdam (1974)
19. 19.
Okhotin, A.: Conjunctive grammars. J. Autom. Lang. Comb. 6(4), 519–535 (2001)
20. 20.
Okhotin, A.: Unresolved systems of language equations: expressive power and decision problems. Theor. Comput. Sci. 349(3), 283–308 (2005)
21. 21.
Okhotin, A.: Computational universality in one-variable language equations. Fundam. Inform. 74(4), 563–578 (2006)
22. 22.
Okhotin, A.: Decision problems for language equations. J. Comput. Syst. Sci. 76(3–4), 251–266 (2010)
23. 23.
Okhotin, A., Rondogiannis, P.: On the expressive power of univariate equations over sets of natural numbers. In: IFIP International Conference on Theoretical Computer Science (TCS 2008), Milan, Italy, 8–10 September 2008. IFIP, vol. 273, pp. 215–227 (2008)
24. 24.
Robinson, J.: An introduction to hyperarithmetical functions. J. Symb. Log. 32(3), 325–342 (1967)
25. 25.
Rogers, H., Jr.: Theory of Recursive Functions and Effective Computability. McGraw-Hill, New York (1967)
26. 26.
Travers, S.D.: The complexity of membership problems for circuits over sets of integers. Theor. Comput. Sci. 369(1–3), 211–229 (2006)