Theory of Computing Systems

, Volume 50, Issue 3, pp 537–544 | Cite as

Irregular Total Labellings of Generalized Petersen Graphs

  • Khandoker Mohammed Mominul Haque


The total edge irregularity strength tes(G) and total vertex irregularity strength tvs(G) are invariants analogous to irregular strength s(G) of a graph G for total labellings. Bača et al. (Discrete Math. 307:1378–1388, 2007) determined the bounds and precise values for some families of graphs concerning these parameters. In this paper, we show the exact values of the total edge irregularity strength and total vertex irregularity strength of generalized Petersen graphs P(n,k).


Irregular total labelling Generalized Petersen graphs Total labelling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bac̆a, M., Jendrol, S., Miller, M., Ryan, J.: On irregular total labellings. Discrete Math. 307, 1378–1388 (2007) MathSciNetCrossRefGoogle Scholar
  2. 2.
    Baril, J.L., Kheddouci, H., Togni, O.: The irregularity strength of circulant graphs. Discrete Math. 304, 1–10 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Brandt, S., Mis̆skuf, J., Rautenbach, D.: On a conjecture about edge irregular total labelings. J. Graph Theory 57, 333–343 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Bohman, T., Kravitz, D.: On the irregularity strength of trees. J. Graph Theory 45(4), 241–254 (2004) MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Ivanc̆o, J., Jendrol, S.: The total edge irregularity strength of trees. Discuss. Math., Graph Theory 26(3), 449–456 (2006) MathSciNetGoogle Scholar
  6. 6.
    Jendrol, S., Tkác̆, M.: The irregularity strength of tKp. Discrete Math. 145, 301–305 (1995) MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Jendrol, S., Z̆oldák, V.: The irregularity strength of generalized Petersen graphs. Math. Slovaca, 45(2), 107–113 (1995) MathSciNetzbMATHGoogle Scholar
  8. 8.
    Jendrol, S., Mis̆kuf, J., Soták, R.: Total edge irregularity strength of complete graphs and complete bipartite graphs. Electron. Notes Discrete Math. 28, 281–285 (2007) CrossRefGoogle Scholar
  9. 9.
    Meissner, A., Niwińska, M.A., Zwierzynski, K.T.: Computing an irregularity strength of selected graphs. Electron. Notes Discrete Math. 24, 137–144 (2006) CrossRefGoogle Scholar
  10. 10.
    Togni, O.: Irregularity strength of the toroidal grid. Discrete Math. 165/166, 609–620 (1997) MathSciNetCrossRefGoogle Scholar
  11. 11.
    Togni, O.: Irregularity strength and compound graphs. Discrete Math. 218, 235–243 (2000) MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringShahjalal University of Science and TechnologySylhetBangladesh

Personalised recommendations