Theory of Computing Systems

, Volume 50, Issue 2, pp 370–386 | Cite as

Computing Space-Filling Curves

  • P. J. Couch
  • B. D. Daniel
  • Timothy H. McNicholl


We show that a continuous surjection of [0,1] onto a Euclidean Peano continuum X can be computed uniformly from a name of X as a compact set and a local connectivity operator for X. We show by means of an example that the second parameter is not superfluous. We then show that this parameter is not necessary either in that there is a computable map of [0,1] into ℝ2 whose image is not effectively locally connected.


Computable analysis Constructive analysis Peano continua Space-filling curves Locally connected spaces 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allaart, P.C., Kawamura, K.: Dimensions of the coordinate functions of space-filling curves. J. Math. Anal. Appl. 335(2), 1161–1176 (2007) CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Arge, L., de Berg, M., Haverkort, H., Yi, K.: The priority R-tree: a practically efficient and worst-case optimal R-tree. ACM Trans. Algorithms 4(1), 30 (2008). Art. 9 CrossRefMathSciNetGoogle Scholar
  3. 3.
    Banakh, T., Tuncali, M.: Controlled Hahn-Mazurkiewicz theorem and some new dimension functions of Peano continua. Topology Appl. 154(7), 1286–1297 (2007) CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Brattka, V.: Plottable real number functions and the computable graph theorem. SIAM J. Comput. 38(1), 303–328 (2008) CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Couch, P.: On a computable Hahn-Mazurkiewicz theorem. Masters thesis, Lamar University (2008) Google Scholar
  6. 6.
    Daniel, D., McNicholl, T.: Effective local connectivity properties. Submitted Google Scholar
  7. 7.
    Gu, X., Lutz, J., Mayordomo, E.: Curves that must be retraced. In: Bauer, A., Dillhage, R., Hertling, P., Ko, K., Rettinger, R. (eds.) CCA 2009, Sixth International Conference on Computability and Complexity in Analysis. Informatik Berichte, vol. 353, pp. 147–158. Fern-Universität, Hagen (2009) Google Scholar
  8. 8.
    Günther, F., Mehl, M., Pögl, M., Zenger, C.: A cache-aware algorithm for PDEs on hierarchical data structures based on space-filling curves. SIAM J. Sci. Comput. 28(5), 1634–1650 (2006) (electronic) CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Hahn, H.: Mengentheoretische characterisierung der stetigen kurven. Sitzungsber. Akad. Wiss. Wien Abt. IIa 123, 2433–2489 (1914) Google Scholar
  10. 10.
    Hamilton, C.H., Rau-Chaplin, A.: Compact Hilbert indices: space-filling curves for domains with unequal side lengths. Inform. Process. Lett. 105(5), 155–163 (2008) CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Hocking, J.G., Young, G.S.: Topology, 2nd edn. Dover, New York (1988) Google Scholar
  12. 12.
    Cannon, J., Thurston, W.: Group invariant Peano curves. Geom. Topol. 11, 1315–1355 (2007) CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Makhanov, S.: Optimization and correction of the tool path of the five-axis milling machine. I. Spatial optimization. Math. Comput. Simul. 75(5–6), 210–230 (2007) CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Mazurkiewicz, S.: Sur les lignes de jordan. Fund. Math. 1, 166–209 (1920) Google Scholar
  15. 15.
    Miller, J.: Effectiveness for embedded spheres and balls. In: Brattka, V., Schröder, M., Weihrauch, K. (eds.) CCA 2002, Computability and Complexity in Analysis. Electronic Notes in Computer Science, vol. 66, pp. 127–138. Elsevier, Amsterdam (2002) Google Scholar
  16. 16.
    Moore, R.L.: On the foundations of plane analysis situs. Trans. Amer. Math. Soc. 17(2), 131–164 (1916) CrossRefMathSciNetGoogle Scholar
  17. 17.
    Munkres, J.R.: Topology: A First Course. Englewood Cliffs, Prentice-Hall (1975) zbMATHGoogle Scholar
  18. 18.
    Peano, G.: Sur une courbe qui remplit toute une aire plane. Math. Ann. 36, 157–160 (1890) CrossRefMathSciNetGoogle Scholar
  19. 19.
    Sagan, H.: Space-filling Curves. Universitext. Springer, New York (1994) CrossRefGoogle Scholar
  20. 20.
    Séébold, P.: Tag-systems for the Hilbert curve. Discrete Math. Theor. Comput. Sci. 9(2), 213–226 (2007) (electronic) MathSciNetGoogle Scholar
  21. 21.
    Sirvent, V.F.: Space filling curves and geodesic laminations. Geom. Dedicata 135, 1–14 (2008) CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Weihrauch, K.: Computable Analysis. Texts in Theoretical Computer Science. An EATCS Series. Springer, Berlin (2000) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • P. J. Couch
    • 1
  • B. D. Daniel
    • 2
  • Timothy H. McNicholl
    • 2
  1. 1.Department of MathematicsAuburn UniversityAuburnUSA
  2. 2.Department of MathematicsLamar UniversityBeaumontUSA

Personalised recommendations