Skip to main content

The Navigational Power of Web Browsers

Navigare necesse est , vivere non est necesse. Pompeius


We investigate the computational capabilities of Web browsers, when equipped with a standard finite automaton. We observe that Web browsers are Turing-complete. We introduce the notion of a navigational problem, and investigate the complexity of solving Web queries and navigational problems by Web browsers, where complexity is measured by the number of clicks.


  1. 1.

    Abiteboul, S., Vianu, V.: Foundations of Databases. Addison-Wesley, Reading (1995)

    MATH  Google Scholar 

  2. 2.

    Abiteboul, S., Vianu, V.: Queries and computation on the Web. Theor. Comput. Sci. 239(2), 231–255 (2000)

    Article  MathSciNet  Google Scholar 

  3. 3.

    Bovet, D., Crescenzi, P.: Introduction to the Theory of Complexity. Prentice Hall, New York (1993). Freely available (2006)

    MATH  Google Scholar 

  4. 4.

    Chandra, A., Harel, D.: Computable queries for relational data bases. J. Comput. Syst. Sci. 21(2), 156–178 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  5. 5.

    Cockburn, A., McKenzie, B., JasonSmith, M.: Pushing back: evaluating a new behaviour for the back and forward buttons in WEB browsers. Int. J. Hum.-Comput. Stud. 57(5), 397–414 (2002)

    Article  Google Scholar 

  6. 6.

    Cockburn, A., et al.: Web navigation.

  7. 7.

    Conklin, J.: Hypertext: an introduction and survey. Computer 20(9), 17–41 (1987)

    Article  Google Scholar 

  8. 8.

    Ebbinghaus, H.-D., Flum, J.: Finite Model Theory. Springer, Berlin (1995)

    MATH  Google Scholar 

  9. 9.

    Edwards, D.M., Hardman, L.: Lost in hyperspace: cognitive mapping and navigation in a hypertext environment. In: McAleese, R. (ed.) Hypertext: Theory into Practice, pp. 90–150. Intellect, Bristol (1999)

    Google Scholar 

  10. 10.

    Greenberg, S., Cockburn, A.: Getting back to back: alternate behaviors for a Web browser’s back button. In: 5th Conference on Human Factors and the Web, Gaithersburg, Maryland, 3 June 1999

  11. 11.

    Immerman, N.: Languages that capture complexity classes. SIAM J. Comput. 16(4), 760–778 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  12. 12.

    Immerman, N.: Descriptive Complexity. Springer, Berlin (1999)

    MATH  Google Scholar 

  13. 13.

    Kaminski, M., Francez, N.: Finite-memory automata. Theor. Comput. Sci. 134(2), 329–363 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  14. 14.

    Kaminski, M., Tan, T.: Regular expressions for languages over infinite alphabets. Fundam. Inform. 69, 301–318 (2006)

    MATH  MathSciNet  Google Scholar 

  15. 15.

    Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  16. 16.

    Libkin, L.: Elements of Finite Model Theory. Springer, Berlin (2004)

    MATH  Google Scholar 

  17. 17.

    Mendelzon, A.O., Milo, T.: Formal models of Web queries. Inf. Syst. 23(8), 615–637 (1998)

    Article  Google Scholar 

  18. 18.

    Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading (1994)

    MATH  Google Scholar 

  19. 19.

    Spielmann, M., Tyszkiewicz, J., Van den Bussche, J.: Distributed computation of Web queries using automata. In: Proceedings 21st ACM Symposium on Principles of Database Systems. ACM, New York (2002)

    Google Scholar 

  20. 20.

    Vardi, M.Y.: The complexity of relational query languages. In: Proceedings 14th ACM Symposium on the Theory of Computing, pp. 137–146 (1982)

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Jerzy Tyszkiewicz.

Additional information

A preliminary report of part of this research was presented at ICALP 2002. Research supported in parts by Polish KBN grants 7T11C 007 21 and 4T11 042 25 (M.B. and J.T.) and by FWO grant G.0246.99 (J.H.).

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (, which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Cite this article

Bielecki, M., Hidders, J., Paredaens, J. et al. The Navigational Power of Web Browsers. Theory Comput Syst 50, 213–240 (2012).

Download citation


  • Web browser
  • Computational completeness
  • Computational complexity
  • Expressive power
  • Navigational problem
  • Click complexity