Theory of Computing Systems

, Volume 50, Issue 2, pp 213–240 | Cite as

The Navigational Power of Web Browsers

  • Michał Bielecki
  • Jan Hidders
  • Jan Paredaens
  • Marc Spielmann
  • Jerzy Tyszkiewicz
  • Jan Van den Bussche
Open Access
Article
  • 292 Downloads

Abstract

We investigate the computational capabilities of Web browsers, when equipped with a standard finite automaton. We observe that Web browsers are Turing-complete. We introduce the notion of a navigational problem, and investigate the complexity of solving Web queries and navigational problems by Web browsers, where complexity is measured by the number of clicks.

Keywords

Web browser Computational completeness Computational complexity Expressive power Navigational problem Click complexity 

References

  1. 1.
    Abiteboul, S., Vianu, V.: Foundations of Databases. Addison-Wesley, Reading (1995) MATHGoogle Scholar
  2. 2.
    Abiteboul, S., Vianu, V.: Queries and computation on the Web. Theor. Comput. Sci. 239(2), 231–255 (2000) CrossRefMathSciNetGoogle Scholar
  3. 3.
    Bovet, D., Crescenzi, P.: Introduction to the Theory of Complexity. Prentice Hall, New York (1993). Freely available http://www.algoritmica.org/piluc/ (2006) MATHGoogle Scholar
  4. 4.
    Chandra, A., Harel, D.: Computable queries for relational data bases. J. Comput. Syst. Sci. 21(2), 156–178 (1980) CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Cockburn, A., McKenzie, B., JasonSmith, M.: Pushing back: evaluating a new behaviour for the back and forward buttons in WEB browsers. Int. J. Hum.-Comput. Stud. 57(5), 397–414 (2002) CrossRefGoogle Scholar
  6. 6.
  7. 7.
    Conklin, J.: Hypertext: an introduction and survey. Computer 20(9), 17–41 (1987) CrossRefGoogle Scholar
  8. 8.
    Ebbinghaus, H.-D., Flum, J.: Finite Model Theory. Springer, Berlin (1995) MATHGoogle Scholar
  9. 9.
    Edwards, D.M., Hardman, L.: Lost in hyperspace: cognitive mapping and navigation in a hypertext environment. In: McAleese, R. (ed.) Hypertext: Theory into Practice, pp. 90–150. Intellect, Bristol (1999) Google Scholar
  10. 10.
    Greenberg, S., Cockburn, A.: Getting back to back: alternate behaviors for a Web browser’s back button. In: 5th Conference on Human Factors and the Web, Gaithersburg, Maryland, 3 June 1999 Google Scholar
  11. 11.
    Immerman, N.: Languages that capture complexity classes. SIAM J. Comput. 16(4), 760–778 (1987) CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Immerman, N.: Descriptive Complexity. Springer, Berlin (1999) MATHGoogle Scholar
  13. 13.
    Kaminski, M., Francez, N.: Finite-memory automata. Theor. Comput. Sci. 134(2), 329–363 (1994) CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Kaminski, M., Tan, T.: Regular expressions for languages over infinite alphabets. Fundam. Inform. 69, 301–318 (2006) MATHMathSciNetGoogle Scholar
  15. 15.
    Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University Press, Cambridge (1997) MATHGoogle Scholar
  16. 16.
    Libkin, L.: Elements of Finite Model Theory. Springer, Berlin (2004) MATHGoogle Scholar
  17. 17.
    Mendelzon, A.O., Milo, T.: Formal models of Web queries. Inf. Syst. 23(8), 615–637 (1998) CrossRefGoogle Scholar
  18. 18.
    Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading (1994) MATHGoogle Scholar
  19. 19.
    Spielmann, M., Tyszkiewicz, J., Van den Bussche, J.: Distributed computation of Web queries using automata. In: Proceedings 21st ACM Symposium on Principles of Database Systems. ACM, New York (2002) Google Scholar
  20. 20.
    Vardi, M.Y.: The complexity of relational query languages. In: Proceedings 14th ACM Symposium on the Theory of Computing, pp. 137–146 (1982) Google Scholar

Copyright information

© The Author(s) 2010

Authors and Affiliations

  • Michał Bielecki
    • 1
  • Jan Hidders
    • 2
    • 4
  • Jan Paredaens
    • 2
  • Marc Spielmann
    • 3
  • Jerzy Tyszkiewicz
    • 1
  • Jan Van den Bussche
    • 3
  1. 1.Institute of InformaticsWarsaw UniversityWarszawaPoland
  2. 2.University of AntwerpAntwerpBelgium
  3. 3.Hasselt University and Transnational University of LimburgDiepenbeekBelgium
  4. 4.Delft University of TechnologyDelftThe Netherlands

Personalised recommendations