Theory of Computing Systems

, Volume 49, Issue 3, pp 639–670 | Cite as

Regular Languages of Nested Words: Fixed Points, Automata, and Synchronization

Article

Abstract

Nested words provide a natural model of runs of programs with recursive procedure calls. The usual connection between monadic second-order logic (MSO) and automata extends from words to nested words and gives us a natural notion of regular languages of nested words.

In this paper we look at some well-known aspects of regular languages—their characterization via fixed points, deterministic and alternating automata for them, and synchronization for defining regular relations—and extend them to nested words. We show that mu-calculus is as expressive as MSO over finite and infinite nested words, and the equivalence holds, more generally, for mu-calculus with past modalities evaluated in arbitrary positions in a word, not only in the first position. We introduce the notion of alternating automata for nested words, show that they are as expressive as the usual automata, and also prove that Muller automata can be determinized (unlike in the case of visibly pushdown languages). Finally we look at synchronization over nested words. We show that the usual letter-to-letter synchronization is completely incompatible with nested words (in the sense that even the weakest form of it leads to an undecidable formalism) and present an alternative form of synchronization that gives us decidable notions of regular relations.

Keywords

Automata Nested words Mu-calculus Query languages Automatic structures 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alur, R., Arenas, M., Barceló, P., Etessami, K., Immerman, N., Libkin, L.: First-order and temporal logics for nested words. Log. Methods Comput. Sci. 4(4), (2008) Google Scholar
  2. 2.
    Alur, R., Chaudhuri, S., Madhusudan, P.: A fixpoint calculus for local and global program flows. In: POPL 2006, pp. 153–165 Google Scholar
  3. 3.
    Alur, R., Chaudhuri, S., Madhusudan, P.: Languages of nested trees. In: CAV 2006, pp. 329–342 Google Scholar
  4. 4.
    Alur, R., Etessami, K., Madhusudan, P.: A temporal logic of nested calls and returns. In: TACAS’04, pp. 467–481 Google Scholar
  5. 5.
    Alur, R., Madhusudan, P.: Visibly pushdown languages. In: STOC’04, pp. 202–211 Google Scholar
  6. 6.
    Alur, R., Madhusudan, P.: Adding nesting structure to words. J. ACM 56(3) (2009). Extended version of DLT’06, pp. 1–13 Google Scholar
  7. 7.
    Arnold, A., Niwinski, D.: Rudiments of μ-Calculus. North-Holland, Amsterdam (2001) Google Scholar
  8. 8.
    Bárány, V., Löding, C., Serre, O.: Regularity problems for visibly pushdown languages. In: STACS’06, pp. 420–431 Google Scholar
  9. 9.
    Barceló, P., Libkin, L.: Temporal logics over unranked trees. In: LICS’05, pp. 31–40 Google Scholar
  10. 10.
    Benedikt, M., Libkin, L., Schwentick, T., Segoufin, L.: Definable relations and first-order query languages over strings. J. ACM 50(5), 694–751 (2003) MathSciNetCrossRefGoogle Scholar
  11. 11.
    Benedikt, M., Libkin, L., Neven, F.: Logical definability and query languages over ranked and unranked trees. ACM Trans. Comput. Log. 8(2) (2007) Google Scholar
  12. 12.
    Blass, A., Gurevich, Y.: A note on nested words. Technical report MSR-TR-2006-139, Microsoft Research, October 2006 Google Scholar
  13. 13.
    Blumensath, A., Grädel, E.: Automatic structures. In: LICS’00, pp. 51–62 Google Scholar
  14. 14.
    Bozzelli, L.: Alternating automata and a temporal fixpoint calculus for visibly pushdown languages. In: CONCUR 2007, pp. 476–491 Google Scholar
  15. 15.
    Bruyère, V., Hansel, G., Michaux, C., Villemaire, R.: Logic and p-recognizable sets of integers. Bull. Belg. Math. Soc. 1, 191–238 (1994) MATHGoogle Scholar
  16. 16.
    Caucal, D.: Synchronization of pushdown automata. In: DLT’06, pp. 120–132 Google Scholar
  17. 17.
    Cleaveland, R., Steffen, B.: A linear-time model-checking algorithm for the alternation-free modal mu-calculus. In: CAV’91, pp. 48–58 Google Scholar
  18. 18.
    Elgot, C., Mezei, J.: On relations defined by generalized finite automata. IBM J. Res. Develop. 9, 47–68 (1965) MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Frougny, C., Sakarovitch, J.: Synchronized rational relations of finite and infinite words. Theor. Comp. Sci. 108, 45–82 (1993) MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Gottlob, G., Koch, C.: Monadic datalog and the expressive power of languages for web information extraction. J. ACM 51, 74–113 (2004) MathSciNetCrossRefGoogle Scholar
  21. 21.
    Janin, D., Walukiewicz, I.: On the expressive completeness of the propositional mu-calculus with respect to monadic second order logic. In: CONCUR 1996, pp. 263–277 Google Scholar
  22. 22.
    Jones, N.D., Laaser, W.T.: Complete problems for deterministic polynomial time. Theor. Comput. Sci. 3(1), 105–117 (1977) MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Lautemann, C., Schwentick, T., Thérien, D.: Logics for context-free languages. In: CSL’94, pp. 205–216 Google Scholar
  24. 24.
    Libkin, L.: Elements of Finite Model Theory. Springer, Berlin (2004) MATHGoogle Scholar
  25. 25.
    Löding, C., Madhusudan, P., Serre, O.: Visibly pushdown games. In: FSTTCS 2004, pp. 408–420 Google Scholar
  26. 26.
    Madhusudan, P., Viswanathan, M.: Query automata for nested words. In: MFCS 2009, pp. 561–573 Google Scholar
  27. 27.
    Makowsky, J.: Algorithmic aspects of the Feferman-Vaught theorem. Ann. Pure Appl. Log. 126, 159–213 (2004) MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Neven, F., Schwentick, Th.: Query automata over finite trees. Theor. Comp. Sci. 275, 633–674 (2002) MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Niwinski, D.: Fixed points vs. infinite generation. In: LICS 1988, pp. 402–409 Google Scholar
  30. 30.
    Peng, F., Chawathe, S.: Xpath queries on streaming data. In: SIGMOD’03, pp. 431–442 Google Scholar
  31. 31.
    Safra, S.: On the complexity of omega-automata. In: FOCS 1988, pp. 319–327 Google Scholar
  32. 32.
    Segoufin, L., Vianu, V.: Validating streaming XML documents. In: PODS’02, pp. 53–64 Google Scholar
  33. 33.
    Thomas, W.: Languages, automata, and logic. In: Handbook of Formal Languages, vol. 3, pp. 389–455. Springer, Berlin (1997) Google Scholar
  34. 34.
    Vardi, M.Y.: An automata-theoretic approach to linear temporal logic. Banff Higher Order Workshop, pp. 238–266 (1995) Google Scholar
  35. 35.
    Vardi, M.Y.: Reasoning about the past with two-way automata. In: ICALP 1998, pp. 628–641 Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Departamento de Ciencia de la ComputaciónPontificia Universidad Católica de ChileSantiagoChile
  2. 2.Departamento de Ciencia de la ComputaciónUniversidad de ChileSantiagoChile
  3. 3.School of InformaticsUniversity of EdinburghEdinburghUK

Personalised recommendations