Advertisement

Theory of Computing Systems

, Volume 48, Issue 3, pp 577–613 | Cite as

Semi-Online Preemptive Scheduling: One Algorithm for All Variants

  • Tomáš Ebenlendr
  • Jiří SgallEmail author
Article

Abstract

We present a unified optimal semi-online algorithm for preemptive scheduling on uniformly related machines with the objective to minimize the makespan. This algorithm works for all types of semi-online restrictions, including the ones studied before, like sorted (decreasing) jobs, known sum of processing times, known maximal processing time, their combinations, and so on. Based on the analysis of this algorithm, we derive some global relations between various semi-online restrictions and tight bounds on the approximation ratios for a small number of machines.

Keywords

Online algorithms Scheduling Preemption Linear program 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Borodin, A., Irani, S., Raghavan, P., Schieber, B.: Competitive paging with locality of reference. J. Comput. Syst. Sci. 50, 244–258 (1995) zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Chen, B., van Vliet, A., Woeginger, G.J.: An optimal algorithm for preemptive on-line scheduling. Oper. Res. Lett. 18, 127–131 (1995) zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Dósa, G., Epstein, L.: Preemptive online scheduling with reordering. In: Proc. 17th European Symp. on Algorithms (ESA). Lecture Notes in Comput. Sci., vol. 5757, pp. 456–467. Springer, Berlin (2009) Google Scholar
  4. 4.
    Du, D.: Optimal preemptive semi-online scheduling on two uniform processors. Inf. Process. Lett. 92, 219–223 (2004) zbMATHCrossRefGoogle Scholar
  5. 5.
    Ebenlendr, T.: Semi-online preemptive scheduling: Study of special cases. In: Proc. 8th Int. Conf. on Parallel Processing and Applied Mathematics (PPAM 2009), Part II. Lecture Notes in Comput. Sci., vol. 6068, pp. 11–20. Springer, Berlin (2010). A full version is available as ITI Series, 2010–495. Charles University, Prague, 2010 Google Scholar
  6. 6.
    Ebenlendr, T., Sgall, J.: Optimal and online preemptive scheduling on uniformly related machines. J. Sched. 12, 517–527 (2009) zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Ebenlendr, T., Jawor, W., Sgall, J.: Preemptive online scheduling: Optimal algorithms for all speeds. Algorithmica 53, 504–522 (2009) zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Englert, M., Özmen, D., Westermann, M.: The power of reordering for online minimum makespan scheduling. In: Proc. 49th Symp. Foundations of Computer Science (FOCS), pp. 603–612. IEEE, New York (2008) Google Scholar
  9. 9.
    Epstein, L., Favrholdt, L.M.: Optimal preemptive semi-online scheduling to minimize makespan on two related machines. Oper. Res. Lett. 30, 269–275 (2002) zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Epstein, L., Sgall, J.: A lower bound for on-line scheduling on uniformly related machines. Oper. Res. Lett. 26, 17–22 (2000) zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Epstein, L., Ye, D.: Semi-online scheduling with “end of sequence” information. J. Comb. Optim. 14, 45–61 (2007) zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Epstein, L., Noga, J., Seiden, S.S., Sgall, J., Woeginger, G.J.: Randomized on-line scheduling for two uniform machines. J. Sched. 4, 71–92 (2001) zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Gonzales, T.F., Sahni, S.: Preemptive scheduling of uniform processor systems. J. ACM 25, 92–101 (1978) CrossRefGoogle Scholar
  14. 14.
    Graham, R.L.: Bounds for certain multiprocessing anomalies. Bell Syst. Tech. J. 45, 1563–1581 (1966) Google Scholar
  15. 15.
    Graham, R.L.: Bounds on multiprocessing timing anomalies. SIAM J. Appl. Math. 17, 263–269 (1969) Google Scholar
  16. 16.
    He, Y., Jiang, Y.: Optimal algorithms for semi-online preemptive scheduling problems on two uniform machines. Acta Inf. 40, 367–383 (2004) zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    He, Y., Jiang, Y.: Preemptive semi-online scheduling with tightly-grouped processing times. J. Comput. Sci. Technol. 19, 733–739 (2004) CrossRefMathSciNetGoogle Scholar
  18. 18.
    He, Y., Zhang, G.: Semi on-line scheduling on two identical machines. Computing 62, 179–187 (1999) zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Horwath, E., Lam, E.C., Sethi, R.: A level algorithm for preemptive scheduling. J. ACM 24, 32–43 (1977) CrossRefGoogle Scholar
  20. 20.
    Jiang, Y., He, Y.: Optimal semi-online algorithms for preemptive scheduling problems with inexact partial information. Acta Inf. 44, 571–590 (2007) zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Kellerer, H., Kotov, V., Speranza, M.G., Tuza, Z.: Semi on-line algorithms for the partition problem. Oper. Res. Lett. 21, 235–242 (1997) zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Seiden, S., Sgall, J., Woeginger, G.J.: Semi-online scheduling with decreasing job sizes. Oper. Res. Lett. 27, 215–221 (2000) CrossRefMathSciNetGoogle Scholar
  23. 23.
    Tan, Z., He, Y.: Semi-on-line problems on two identical machines with combined partial information. Oper. Res. Lett. 30, 408–414 (2002) zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Tan, Z., He, Y.: Semi-online scheduling problems on two identical machines with inexact partial information. Theor. Comput. Sci. 377, 110–125 (2007) zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Wen, J., Du, D.: Preemptive on-line scheduling for two uniform processors. Oper. Res. Lett. 23, 113–116 (1998) zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Zhang, G., Ye, D.: A note on on-line scheduling with partial information. Comput. Math. Appl. 44, 539–543 (1999) CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Institute of MathematicsAS CR, Žitná 25Praha 1Czech Republic
  2. 2.Dept. of Applied Mathematics, Faculty of Mathematics and PhysicsCharles University, Malostranské nám. 25Praha 1Czech Republic

Personalised recommendations