Theory of Computing Systems

, Volume 49, Issue 1, pp 162–181 | Cite as

On the Complexity of Iterated Weak Dominance in Constant-Sum Games

  • Felix Brandt
  • Markus Brill
  • Felix Fischer
  • Paul Harrenstein
Article

Abstract

In game theory, an action is said to be weakly dominated if there exists another action of the same player that, with respect to what the other players do, is never worse and sometimes strictly better. We investigate the computational complexity of the process of iteratively eliminating weakly dominated actions (IWD) in two-player constant-sum games, i.e., games in which the interests of both players are diametrically opposed. It turns out that deciding whether an action is eliminable via IWD is feasible in polynomial time whereas deciding whether a given subgame is reachable via IWD is NP-complete. The latter result is quite surprising, as we are not aware of other natural computational problems that are intractable in constant-sum normal-form games. Furthermore, we slightly improve on a result of V. Conitzer and T. Sandholm by showing that typical problems associated with IWD in win-lose games with at most one winner are NP-complete.

Keywords

Game theory Constant-sum games Solutions concepts Iterated weak dominance Computational complexity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Apt, K.R.: Uniform proofs of order independence for various strategy elimination procedures. Contrib. Theor. Econ. 4(1) (2004) Google Scholar
  2. 2.
    Bernheim, B.: Rationalizable strategic behavior. Econometrica 52(4), 1007–1028 (1984) MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Brandenburger, A., Friedenberg, A., Keisler, H.J.: Admissibility in games. Econometrica 76(2), 307–352 (2008) MathSciNetMATHGoogle Scholar
  4. 4.
    Brandt, F., Brill, M., Fischer, F., Harrenstein, P., Hoffmann, J.: Computing Shapley’s saddles, ACM SIGecom Exchanges 8(2) (2009) Google Scholar
  5. 5.
    Brandt, F., Fischer, F., Harrenstein, P., Shoham, Y.: Ranking games Artif. Intell. 173(2), 221–239 (2009) MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Conitzer, V., Sandholm, T.: Complexity of (iterated) dominance. In: Proceedings of the 6th ACM Conference on Electronic Commerce (ACM-EC), pp. 88–97. ACM Press, New York (2005) CrossRefGoogle Scholar
  7. 7.
    Ewerhart, C.: Iterated weak dominance in strictly competitive games of perfect information. J. Econ. Theory 107, 474–482 (2002) MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Gilboa, I., Kalai, E., Zemel, E.: The complexity of eliminating dominated strategies. Math. Oper. Res. 18(3), 553–565 (1993) MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Kohlberg, E., Mertens, J.-F.: On the strategic stability of equilibria. Econometrica 54, 1003–1037 (1986) MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Koller, D., Megiddo, N.: The complexity of two-person zero-sum games in extensive form. Games Econ. Behav. 4(4), 528–552 (1992) MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Luce, R.D., Raiffa, H.: Games and Decisions: Introduction and Critical Survey. Wiley, New York (1957) MATHGoogle Scholar
  12. 12.
    Marx, L.M., Swinkels, J.M.: Order independence for iterated weak dominance. Games Econ. Behav. 18, 219–245 (1997) MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Myerson, R.B.: Game Theory: Analysis of Conflict. Harvard University Press, Cambridge (1991) MATHGoogle Scholar
  14. 14.
    Osborne, M.: An Introduction to Game Theory. University Press, Oxford (2004) Google Scholar
  15. 15.
    Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading (1994) MATHGoogle Scholar
  16. 16.
    Pearce, D.: Rationalizable strategic behavior and the problem of perfection. Econometrica 52(4), 1029–1050 (1984) MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Samuelson, L.: Dominated strategies and common knowledge. Games Econ. Behav. 4, 284–313 (1992) MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Shimoji, M.: On the equivalence of weak dominance and sequential best response. Games Econ. Behav. 48, 385–402 (2004) MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Shoham, Y., Leyton-Brown, K.: Multiagent Systems: Algorithmic, Game-Theoretic, and Logical Foundations. Cambridge University Press, Cambridge (2009) MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Felix Brandt
    • 1
  • Markus Brill
    • 1
  • Felix Fischer
    • 2
  • Paul Harrenstein
    • 1
  1. 1.Institut für InformatikTechnische Universität MünchenGarchingGermany
  2. 2.Harvard School of Engineering and Applied SciencesCambridgeUSA

Personalised recommendations