Advertisement

Theory of Computing Systems

, Volume 48, Issue 3, pp 535–553 | Cite as

Generating Shorter Bases for Hard Random Lattices

  • Joël Alwen
  • Chris Peikert
Article

Abstract

We revisit the problem of generating a ‘hard’ random lattice together with a basis of relatively short vectors. This problem has gained in importance lately due to new cryptographic schemes that use such a procedure to generate public/secret key pairs. In these applications, a shorter basis corresponds to milder underlying complexity assumptions and smaller key sizes.

The contributions of this work are twofold. First, we simplify and modularize an approach originally due to Ajtai (ICALP 1999). Second, we improve the construction and its analysis in several ways, most notably by making the output basis asymptotically as short as possible.

Keywords

Lattices Average-case hardness Cryptography Hermite normal form 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ajtai, M.: Generating hard instances of the short basis problem. In: ICALP, pp. 1–9 (1999) Google Scholar
  2. 2.
    Ajtai, M.: Generating hard instances of lattice problems. Quad. Mat. 13, 1–32 (2004). Preliminary version in STOC 1996 MathSciNetGoogle Scholar
  3. 3.
    Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a lattice basis. In: EUROCRYPT, pp. 523–552 (2010) Google Scholar
  4. 4.
    Goldreich, O., Goldwasser, S., Halevi, S.: Collision-free hashing from lattice problems. Electron. Colloq. Comput. Complex. (ECCC) 3(42) (1996) Google Scholar
  5. 5.
    Goldreich, O., Goldwasser, S., Halevi, S.: Public-key cryptosystems from lattice reduction problems. In: CRYPTO, pp. 112–131 (1997) Google Scholar
  6. 6.
    Gentry, C., Halevi, S., Vaikuntanathan, V.: A simple BGN-type cryptosystem from LWE. In: EUROCRYPT, pp. 506–522 (2010) Google Scholar
  7. 7.
    Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: STOC, pp. 197–206 (2008) Google Scholar
  8. 8.
    Håstad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999) zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Mazo, J.E., Odlyzko, A.M.: Lattice points in high-dimensional spheres. Mon. Math. 110(1), 47–61 (1990) zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Micciancio, D.: Improving lattice based cryptosystems using the Hermite normal form. In: CaLC, pp. 126–145 (2001) Google Scholar
  11. 11.
    Micciancio, D., Regev, O.: Worst-case to average-case reductions based on Gaussian measures. SIAM J. Comput. 37(1), 267–302 (2007). Preliminary version in FOCS 2004 zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Micciancio, D., Regev, O.: Lattice-based cryptography. In: Post Quantum Cryptography, pp. 147–191. Springer, Berlin (2009) CrossRefGoogle Scholar
  13. 13.
    Micciancio, D., Vadhan, S.P.: Statistical zero-knowledge proofs with efficient provers: Lattice problems and more. In: CRYPTO, pp. 282–298 (2003) Google Scholar
  14. 14.
    Micciancio, D., Warinschi, B.: A linear space algorithm for computing the Hermite normal form. In: ISSAC, pp. 231–236 (2001) Google Scholar
  15. 15.
    Nguyen, P.Q.: Cryptanalysis of the Goldreich-Goldwasser-Halevi cryptosystem from Crypto ’97. In: CRYPTO, pp. 288–304 (1999) Google Scholar
  16. 16.
    Nguyen, P.Q., Regev, O.: Learning a parallelepiped: Cryptanalysis of GGH and NTRU signatures. J. Cryptol. 22(2), 139–160 (2009). Preliminary version in Eurocrypt 2006 zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem. In: STOC, pp. 333–342 (2009) Google Scholar
  18. 18.
    Peikert, C., Vaikuntanathan, V.: Noninteractive statistical zero-knowledge proofs for lattice problems. In: CRYPTO, pp. 536–553 (2008) Google Scholar
  19. 19.
    Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and composable oblivious transfer. In: CRYPTO, pp. 554–571 (2008) Google Scholar
  20. 20.
    Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. J. ACM 56(6) (2009). Preliminary version in STOC 2005 Google Scholar
  21. 21.
    Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997) zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Vershynin, R.: Lecture notes on non-asymptotic theory of random matrices (2007). Available at http://www-personal.umich.edu/~romanv/teaching/2006-07/280/, last accessed 17 Feb. 2010

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.New York UniversityNew YorkUSA
  2. 2.Georgia Institute of TechnologyAtlantaUSA

Personalised recommendations