Theory of Computing Systems

, Volume 48, Issue 3, pp 465–485 | Cite as

Randomness on Computable Probability Spaces—A Dynamical Point of View

Article

Abstract

We extend the notion of randomness (in the version introduced by Schnorr) to computable probability spaces and compare it to a dynamical notion of randomness: typicality. Roughly, a point is typical for some dynamic, if it follows the statistical behavior of the system (Birkhoff’s pointwise ergodic theorem). We prove that a point is Schnorr random if and only if it is typical for every mixing computable dynamics. To prove the result we develop some tools for the theory of computable probability spaces (for example, morphisms) that are expected to have other applications.

Keywords

Schnorr randomness Birkhoff’s ergodic theorem Computable measures 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Billingsley, P.: Convergence of Probability Measures. Wiley, New York (1968) MATHGoogle Scholar
  2. 2.
    Downey, R.G., Griffiths, E.J.: Schnorr randomness. Electr. Notes Theor. Comput. Sci. 66(1), 1199–1205 (2002) Google Scholar
  3. 3.
    Gács, P.: Uniform test of algorithmic randomness over a general space. Theor. Comput. Sci. 341, 91–137 (2005) MATHCrossRefGoogle Scholar
  4. 4.
    Galatolo, S., Hoyrup, M., Rojas, C.: Effective symbolic dynamics, random points, statistical behavior, complexity and entropy. Inf. Comput. (to appear) Google Scholar
  5. 5.
    Hoyrup, M., Rojas, C.: Computability of probability measures and Martin-Löf randomness over metric spaces. Inf. Comput. 207(7), 830–847 (2009) MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Isola, S.: On systems with finite ergodic degree. Far East J. Dyn. Syst. 5, 1–62 (2003) MATHMathSciNetGoogle Scholar
  7. 7.
    Kolmogorov, A.N.: Three approaches to the quantitative definition of information. Probl. Inf. Transm. 1, 1–7 (1965) Google Scholar
  8. 8.
    Li, M., Vitanyi, P.M.B.: An Introduction to Kolmogorov Complexity and Its Applications. Springer, Berlin (1993) MATHGoogle Scholar
  9. 9.
    Martin-Löf, P.: The definition of random sequences. Inf. Control 9(6), 602–619 (1966) CrossRefGoogle Scholar
  10. 10.
    Schnorr, C.-P.: Zufälligkeit und Wahrscheinlichkeit: Eine algorithmische Begründung der Wahrscheinlichkeitstheorie. Lecture Notes in Mathematics, vol. 218. Springer, Berlin/New York (1971) MATHGoogle Scholar
  11. 11.
    Schnorr, C.-P.: The process complexity and effective random tests. In: STOC, pp. 168–176 (1972) Google Scholar
  12. 12.
    Turing, A.: On computable numbers, with an application to the Entscheidungsproblem. Proc. Lond. Math. Soc. 2(42), 230–265 (1936) Google Scholar
  13. 13.
    Viana, M.: Stochastic dynamics of deterministic systems. In: Lecture Notes XXI Braz. Math. Colloq. IMPA, Rio de Janeiro (1997) Google Scholar
  14. 14.
    Ville, J.: Etude Critique de la Notion de Collectif. Gauthier-Villars, Paris (1939) Google Scholar
  15. 15.
    V’yugin, V.V.: Effective convergence in probability and an ergodic theorem for individual random sequences. SIAM Theory Probab. Appl. 42(1), 39–50 (1997) CrossRefMathSciNetGoogle Scholar
  16. 16.
    Weihrauch, K.: Computability on computable metric spaces. Theor. Comput. Sci. 113, 191–210 (1993). Fundamental study MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Young, L.-S.: What are SRB measures, and which dynamical systems have them? J. Stat. Phys. 108, 733–754 (2002) MATHCrossRefGoogle Scholar
  18. 18.
    Zvonkin, A.K., Levin, L.A.: The complexity of finite objects and the development of the concepts of information and randomness by means of the theory of algorithms. Russ. Math. Surv. 256, 83–124 (1970) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Computer Science DepartmentBoston UniversityBostonUSA
  2. 2.INRIA NancyVandœuvre-lès-NancyFrance
  3. 3.The Fields Institute for Research in Mathematical SciencesTorontoCanada

Personalised recommendations