Theory of Computing Systems

, Volume 49, Issue 2, pp 273–282 | Cite as

New Plain-Exponential Time Classes for Graph Homomorphism



A homomorphism from a graph G to a graph H (in this paper, both simple, undirected graphs) is a mapping f:V(G)→V(H) such that if uvE(G) then f(u)f(v)∈E(H). The problem Hom (G,H) of deciding whether there is a homomorphism is NP-complete, and in fact the fastest known algorithm for the general case has a running time of O *(n(H)cn(G)) (the notation O *(⋅) signifies that polynomial factors have been ignored) for a constant 0<c<1. In this paper, we consider restrictions on the graphs G and H such that the problem can be solved in plain-exponential time, i.e. in time O *(c n(G)+n(H)) for some constant c.

Previous research has identified two such restrictions. If H=K k or contains K k as a core (i.e. a homomorphically equivalent subgraph), then Hom (G,H) is the k-coloring problem, which can be solved in time O *(2n(G)) (Björklund, Husfeldt, Koivisto); and if H has treewidth at most k, then Hom (G,H) can be solved in time O *((k+3)n(G)) (Fomin, Heggernes, Kratsch). We extend these results to cases of bounded cliquewidth: if H has cliquewidth at most k, then we can count the number of homomorphisms from G to H in time O *((2k+1)max (n(G),n(H))), including the time for finding a k-expression for H. The result extends to deciding Hom (G,H) when H has a core with a k-expression, in this case with a somewhat worse running time.

If G has cliquewidth at most k, then a similar result holds, with a worse dependency on k: We are able to count Hom (G,H) in time O *((2k+1)n(G)+22kn(H)), and this also extends to when G has a core of cliquewidth at most k with a similar running time.


Graph homomorphism Exact algorithms Cliquewidth 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amini, O., Fomin, F.V., Saurabh, S.: Counting subgraphs via homomorphisms. In: ICALP, vol. 1, pp. 71–82 (2009) Google Scholar
  2. 2.
    Björklund, A., Husfeldt, T., Koivisto, M.: Set partitioning via inclusion-exclusion. SIAM J. Comput. 39(2), 546–563 (2009) MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Byskov, J.M.: Exact algorithms for graph colouring and exact satisfiability. PhD thesis, University of Aarhus (2005) Google Scholar
  4. 4.
    Corneil, D.G., Habib, M., Lanlignel, J.-M., Reed, B.A., Rotics, U.: Polynomial time recognition of clique-width ≤ 3 graphs (extended abstract). In: LATIN, pp. 126–134 (2000) Google Scholar
  5. 5.
    Courcelle, B., Engelfriet, J., Rozenberg, G.: Handle-rewriting hypergraph grammars. J. Comput. Syst. Sci. 46, 218–270 (1993) MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Courcelle, B., Olariu, S.: Upper bounds to the clique width of graphs. Discrete Appl. Math. 101(1–3), 77–114 (2000) MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Downey, R.G., Fellows, M.: Parameterized Complexity. Monographs in Computer Science. Springer, Berlin (1999) Google Scholar
  8. 8.
    Eppstein, D.: Small maximal independent sets and faster exact graph coloring. J. Graph Algorithms Appl. 7(2), 131–140 (2003) MathSciNetMATHGoogle Scholar
  9. 9.
    Fellows, M.R., Rosamond, F.A., Rotics, U., Szeider, S.: Clique-width minimization is NP-hard. In: STOC, pp. 354–362 (2006) Google Scholar
  10. 10.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Berlin (2006) Google Scholar
  11. 11.
    Fomin, F.V., Heggernes, P., Kratsch, D.: Exact algorithms for graph homomorphisms. Theory Comput. Syst. 41(2), 381–393 (2007) MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Golumbic, M.C., Rotics, U.: On the clique-width of perfect graph classes. In: WG, pp. 135–147 (1999) Google Scholar
  13. 13.
    Grohe, M.: The complexity of homomorphism and constraint satisfaction problems seen from the other side. J. ACM 54(1) (2007) Google Scholar
  14. 14.
    Gutin, G., Hell, P., Rafiey, A., Yeo, A.: A dichotomy for minimum cost graph homomorphisms. Eur. J. Comb. 29, 900–911 (2008) MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Gutin, G., Rafiey, A., Yeo, A.: Minimum cost and list homomorphisms to semicomplete digraphs. Discrete Appl. Math. 154(6), 890–897 (2006) MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Gutin, G., Rafiey, A., Yeo, A., Tso, M.: Level of repair analysis and minimum cost homomorphisms of graphs. Discrete Appl. Math. 154(6), 881–889 (2006) MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Hell, P., Nešetřil, J.: On the complexity of H-coloring. J. Comb. Theory, Ser. B 48(1), 92–110 (1990) MATHCrossRefGoogle Scholar
  18. 18.
    Hell, P., Nešetřil, J.: Graphs and Homomorphisms. Oxford University Press, Oxford (2004) MATHCrossRefGoogle Scholar
  19. 19.
    Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity? J. Comput. Syst. Sci. 63(4), 512–530 (2001) MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Jonsson, P., Nordh, G., Thapper, J.: The maximum solution problem on graphs. In: MFCS, pp. 228–239 (2007) Google Scholar
  21. 21.
    Lawler, E.: A note on the complexity of the chromatic number problem. Inf. Process. Lett. 5, 66–67 (1976) MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Oum, S.-I.: Approximating rank-width and clique-width quickly. ACM Trans. Algorithms 5(1), 1–20 (2008) MathSciNetCrossRefGoogle Scholar
  23. 23.
    Traxler, P.: The time complexity of constraint satisfaction. In: IWPEC, pp. 190–201 (2008) Google Scholar
  24. 24.
    Williams, R.: A new algorithm for optimal 2-constraint satisfaction and its implications. Theor. Comput. Sci. 348(2–3), 357–365 (2005) MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Max-Planck-Institut für InformatikSaarbrückenGermany

Personalised recommendations