Theory of Computing Systems

, Volume 49, Issue 2, pp 273–282 | Cite as

New Plain-Exponential Time Classes for Graph Homomorphism

Article

Abstract

A homomorphism from a graph G to a graph H (in this paper, both simple, undirected graphs) is a mapping f:V(G)→V(H) such that if uvE(G) then f(u)f(v)∈E(H). The problem Hom (G,H) of deciding whether there is a homomorphism is NP-complete, and in fact the fastest known algorithm for the general case has a running time of O *(n(H)cn(G)) (the notation O *(⋅) signifies that polynomial factors have been ignored) for a constant 0<c<1. In this paper, we consider restrictions on the graphs G and H such that the problem can be solved in plain-exponential time, i.e. in time O *(c n(G)+n(H)) for some constant c.

Previous research has identified two such restrictions. If H=K k or contains K k as a core (i.e. a homomorphically equivalent subgraph), then Hom (G,H) is the k-coloring problem, which can be solved in time O *(2n(G)) (Björklund, Husfeldt, Koivisto); and if H has treewidth at most k, then Hom (G,H) can be solved in time O *((k+3)n(G)) (Fomin, Heggernes, Kratsch). We extend these results to cases of bounded cliquewidth: if H has cliquewidth at most k, then we can count the number of homomorphisms from G to H in time O *((2k+1)max (n(G),n(H))), including the time for finding a k-expression for H. The result extends to deciding Hom (G,H) when H has a core with a k-expression, in this case with a somewhat worse running time.

If G has cliquewidth at most k, then a similar result holds, with a worse dependency on k: We are able to count Hom (G,H) in time O *((2k+1)n(G)+22kn(H)), and this also extends to when G has a core of cliquewidth at most k with a similar running time.

Keywords

Graph homomorphism Exact algorithms Cliquewidth 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amini, O., Fomin, F.V., Saurabh, S.: Counting subgraphs via homomorphisms. In: ICALP, vol. 1, pp. 71–82 (2009) Google Scholar
  2. 2.
    Björklund, A., Husfeldt, T., Koivisto, M.: Set partitioning via inclusion-exclusion. SIAM J. Comput. 39(2), 546–563 (2009) MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Byskov, J.M.: Exact algorithms for graph colouring and exact satisfiability. PhD thesis, University of Aarhus (2005) Google Scholar
  4. 4.
    Corneil, D.G., Habib, M., Lanlignel, J.-M., Reed, B.A., Rotics, U.: Polynomial time recognition of clique-width ≤ 3 graphs (extended abstract). In: LATIN, pp. 126–134 (2000) Google Scholar
  5. 5.
    Courcelle, B., Engelfriet, J., Rozenberg, G.: Handle-rewriting hypergraph grammars. J. Comput. Syst. Sci. 46, 218–270 (1993) MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Courcelle, B., Olariu, S.: Upper bounds to the clique width of graphs. Discrete Appl. Math. 101(1–3), 77–114 (2000) MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Downey, R.G., Fellows, M.: Parameterized Complexity. Monographs in Computer Science. Springer, Berlin (1999) Google Scholar
  8. 8.
    Eppstein, D.: Small maximal independent sets and faster exact graph coloring. J. Graph Algorithms Appl. 7(2), 131–140 (2003) MathSciNetMATHGoogle Scholar
  9. 9.
    Fellows, M.R., Rosamond, F.A., Rotics, U., Szeider, S.: Clique-width minimization is NP-hard. In: STOC, pp. 354–362 (2006) Google Scholar
  10. 10.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Berlin (2006) Google Scholar
  11. 11.
    Fomin, F.V., Heggernes, P., Kratsch, D.: Exact algorithms for graph homomorphisms. Theory Comput. Syst. 41(2), 381–393 (2007) MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Golumbic, M.C., Rotics, U.: On the clique-width of perfect graph classes. In: WG, pp. 135–147 (1999) Google Scholar
  13. 13.
    Grohe, M.: The complexity of homomorphism and constraint satisfaction problems seen from the other side. J. ACM 54(1) (2007) Google Scholar
  14. 14.
    Gutin, G., Hell, P., Rafiey, A., Yeo, A.: A dichotomy for minimum cost graph homomorphisms. Eur. J. Comb. 29, 900–911 (2008) MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Gutin, G., Rafiey, A., Yeo, A.: Minimum cost and list homomorphisms to semicomplete digraphs. Discrete Appl. Math. 154(6), 890–897 (2006) MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Gutin, G., Rafiey, A., Yeo, A., Tso, M.: Level of repair analysis and minimum cost homomorphisms of graphs. Discrete Appl. Math. 154(6), 881–889 (2006) MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Hell, P., Nešetřil, J.: On the complexity of H-coloring. J. Comb. Theory, Ser. B 48(1), 92–110 (1990) MATHCrossRefGoogle Scholar
  18. 18.
    Hell, P., Nešetřil, J.: Graphs and Homomorphisms. Oxford University Press, Oxford (2004) MATHCrossRefGoogle Scholar
  19. 19.
    Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity? J. Comput. Syst. Sci. 63(4), 512–530 (2001) MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Jonsson, P., Nordh, G., Thapper, J.: The maximum solution problem on graphs. In: MFCS, pp. 228–239 (2007) Google Scholar
  21. 21.
    Lawler, E.: A note on the complexity of the chromatic number problem. Inf. Process. Lett. 5, 66–67 (1976) MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Oum, S.-I.: Approximating rank-width and clique-width quickly. ACM Trans. Algorithms 5(1), 1–20 (2008) MathSciNetCrossRefGoogle Scholar
  23. 23.
    Traxler, P.: The time complexity of constraint satisfaction. In: IWPEC, pp. 190–201 (2008) Google Scholar
  24. 24.
    Williams, R.: A new algorithm for optimal 2-constraint satisfaction and its implications. Theor. Comput. Sci. 348(2–3), 357–365 (2005) MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Max-Planck-Institut für InformatikSaarbrückenGermany

Personalised recommendations