Advertisement

Theory of Computing Systems

, Volume 48, Issue 3, pp 693–714 | Cite as

Topological Dynamics of Cellular Automata: Dimension Matters

  • Mathieu Sablik
  • Guillaume Theyssier
Article

Abstract

Topological dynamics of cellular automata (CA), inherited from classical dynamical systems theory, has been essentially studied in dimension 1. This paper focuses on higher dimensional CA and aims at showing that the situation is different and more complex starting from dimension 2. The main results are the existence of non sensitive CA without equicontinuous points, the non-recursivity of sensitivity constants, the existence of CA having only non-recursive equicontinuous points and the existence of CA having only countably many equicontinuous points. They all show a difference between dimension 1 and higher dimensions. Thanks to these new constructions, we also extend undecidability results concerning topological classification previously obtained in the 1D case. Finally, we show that the set of sensitive CA is only \(\varPi _{2}^{0}\) in dimension 1, but becomes \(\varSigma _{3}^{0}\)-hard for dimension 3.

Keywords

Multidimensional cellular automata Topological dynamics Complexity of decision problem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berger, R.: The undecidability of the domino problem. Mem. Am. Math Soc. 66 (1966) Google Scholar
  2. 2.
    Bernardi, V., Durand, B., Formenti, E., Kari, J.: A new dimension sensitive property for cellular automata. In: Fiala, J., Koubek, V., Kratochvíl, J. (eds.) Mathematical Foundations of Computer Science 2004. Lecture Notes in Computer Science, vol. 3153, pp. 416–426. Springer, Berlin (2004) CrossRefGoogle Scholar
  3. 3.
    Blanchard, F., Maass, A.: Dynamical properties of expansive one-sided cellular automata. Isr. J. Math. 99 (1997) Google Scholar
  4. 4.
    Blanchard, F., Tisseur, P.: Some properties of cellular automata with equicontinuity points. Ann. Inst. Henri Poincaré, Prob. Stat. 36, 569–582 (2000) zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Durand, B., Formenti, E., Varouchas, G.: On undecidability of equicontinuity classification for cellular automata. In: Morvan, M., Rémila, É. (eds.) DMCS’03. DMTCS Proceedings, vol. AB, pp. 117–128 (2003) Google Scholar
  6. 6.
    Fagnani, F., Margara, L.: Expansivity, permutivity, and chaos for cellular automata. Theory Comput. Syst. 31(6), 663–677 (1998) zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Hanf, W.: Nonrecursive tilings of the plane. I. J. Symb. Log. 39(2), 283–285 (1966) CrossRefMathSciNetGoogle Scholar
  8. 8.
    Hedlund, G.A.: Endomorphisms and automorphisms of the shift dynamical systems. Math. Syst. Theory 3(4), 320–375 (1969) zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Kari, J.: Reversibility and surjectivity problems of cellular automata. J. Comput. Syst. Sci. 48(1), 149–182 (1994) zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Kůrka, P.: Languages, equicontinuity and attractors in cellular automata. Ergod. Theory Dyn. Syst. 17, 417–433 (1997) zbMATHCrossRefGoogle Scholar
  11. 11.
    Myers, D.: Nonrecursive tilings of the plane. II. J. Symb. Log. 39(2), 286–294 (1966) CrossRefGoogle Scholar
  12. 12.
    Rogers, H.: Theory of Recursive Functions and Effective Computability. MIT Press, Cambridge (1967) zbMATHGoogle Scholar
  13. 13.
    Sablik, M., Theyssier, G.: Topological dynamics of 2d cellular automata. In: CiE, pp. 523–532 (2008) Google Scholar
  14. 14.
    Wang, H.: Proving theorems by pattern recognition II. Bell Syst. Tech. J. 40(2) (1961) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.LATP, UMR 6632—CNRS, Université de Provence, CMI, Université de ProvenceTechnopôle Château-GombertMarseille Cedex 13France
  2. 2.LAMA, UMR 5127—CNRSUniversité de SavoieLe Bourget-du-lac CedexFrance

Personalised recommendations