Theory of Computing Systems

, Volume 48, Issue 2, pp 319–342 | Cite as

Complexity of Equations over Sets of Natural Numbers

  • Artur Jeż
  • Alexander Okhotin


Systems of equations of the form X i =φ i (X 1,…,X n ) (1 i n) are considered, in which the unknowns are sets of natural numbers. Expressions φ i may contain the operations of union, intersection and elementwise addition \(S+T=\{m+n\mid m\in S\) , nT}. A system with an EXPTIME-complete least solution is constructed in the paper through a complete arithmetization of EXPTIME-completeness. At the same time, it is established that least solutions of all such systems are in EXPTIME. The general membership problem for these equations is proved to be EXPTIME-complete. Among the consequences of the result is EXPTIME-completeness of the compressed membership problem for conjunctive grammars.

Language equations Integer expressions Conjunctive grammars Computational complexity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brent, R.P., Goldschlager, L.M.: A parallel algorithm for context-free parsing. Aust. Comput. Sci. Commun. 6(7), 7.1–7.10 (1984) Google Scholar
  2. 2.
    Breunig, H.-G.: The complexity of membership problems for circuits over sets of positive numbers. In: Fundamentals of Computation Theory, FCT 2007, Budapest, Hungary, August 27–30, 2007. LNCS, vol. 4639, pp. 125–136. Springer, Berlin (2007) CrossRefGoogle Scholar
  3. 3.
    Cai, J.-Y., Sivakumar, D.: Sparse hard sets for P: resolution of a conjecture of Hartmanis. J. Comput. Syst. Sci. 58(2), 280–296 (1999) zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Chandra, A.K., Kozen, D.C., Stockmeyer, L.J.: Alternation. J. ACM 28(1), 114–133 (1981) zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Ginsburg, S., Rice, H.G.: Two families of languages related to ALGOL. J. ACM, 9, 350–371 (1962) CrossRefMathSciNetGoogle Scholar
  6. 6.
    Glaßer, C., Herr, K., Reitwießner, C., Travers, S.D., Waldherr, M.: Equivalence problems for circuits over sets of natural numbers. In: Computer Science in Russia, CSR 2007, Ekaterinburg, Russia, September 3–7, 2007. LNCS, vol. 4649, pp. 127–138. Springer, Berlin (2007). Google Scholar
  7. 7.
    Huynh, D.T.: Commutative grammars: the complexity of uniform word problems. Inf. Control 57(1), 21–39 (1983) zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Jeż, A.: Conjunctive grammars can generate non-regular unary languages. Int. J. Found. Comput. Sci. 19(3), 597–615 (2008) zbMATHCrossRefGoogle Scholar
  9. 9.
    Jeż, A., Okhotin, A.: Conjunctive grammars over a unary alphabet: undecidability and unbounded growth. Theory Comput. Syst. 46(1), 27–58 (2010) zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Jones, N.D., Laaser, W.T.: Complete problems for deterministic polynomial time. Theor. Comput. Sci. 3(1), 105–117 (1976) CrossRefMathSciNetGoogle Scholar
  11. 11.
    Kunc, M.: The power of commuting with finite sets of words. Theory Comput. Syst. 40(4), 521–551 (2007) zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Kunc, M.: What do we know about language equations? In: Developments in Language Theory, DLT 2007, Turku, Finland, July 3–6, 2007. LNCS, vol. 4588, pp. 23–27. Springer, Berlin (2007) CrossRefGoogle Scholar
  13. 13.
    Lohrey, M.: Word problems and membership problems on compressed words. SIAM J. Comput. 35(5), 1210–1240 (2006) zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Markey, N., Schnoebelen, Ph.: A PTIME-complete matching problem for SLP-compressed words. Inf. Process. Lett. 90(1), 3–6 (2004) zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    McKenzie, P., Wagner, K.: The complexity of membership problems for circuits over sets of natural numbers. Comput. Complex. 16(3), 211–244 (2007) zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Ogihara, M.: Sparse hard sets for P yield space-efficient algorithms. Chic. J. Theor. Comput. Sci. (1996), article 2 Google Scholar
  17. 17.
    Okhotin, A.: Conjunctive grammars. J. Autom. Lang. Comb. 6(4), 519–535 (2001) zbMATHMathSciNetGoogle Scholar
  18. 18.
    Okhotin, A.: A recognition and parsing algorithm for arbitrary conjunctive grammars. Theor. Comput. Sci. 302, 365–399 (2003) zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Okhotin, A.: The hardest linear conjunctive language. Inf. Process. Lett. 86(5), 247–253 (2003) zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Okhotin, A.: Unresolved systems of language equations: expressive power and decision problems. Theor. Comput. Sci. 349(3), 283–308 (2005) zbMATHMathSciNetGoogle Scholar
  21. 21.
    Okhotin, A.: Decision problems for language equations. J. Comput. Syst. Sci. 76 (2010), to appear Google Scholar
  22. 22.
    Plandowski, W., Rytter, W.: Complexity of language recognition problems for compressed words. In: Karhumäki, J., Maurer, H.A., Păun, G., Rozenberg, G. (eds.) Jewels are Forever, pp. 262–272. Springer, Berlin (1999) Google Scholar
  23. 23.
    Rytter, W.: On the recognition of context-free languages. In: Fundamentals of Computation Theory, FCT 1985, Cottbus, Germany. LNCS, vol. 208, pp. 315–322. Springer, Berlin (1985) Google Scholar
  24. 24.
    Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time. In: 5th Annual ACM Symposium on Theory of Computing, STOC 1973, Austin, USA, April 30–May 2, 1973, pp. 1–9 (1973) Google Scholar
  25. 25.
    Travers, S.D.: The complexity of membership problems for circuits over sets of integers. Theor. Comput. Sci. 369(1–3), 211–229 (2006) zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Yang, K.: Integer circuit evaluation is PSPACE-complete. J. Comput. Syst. Sci. 63(2), 288–303 (2001) zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Institute of Computer ScienceUniversity of WrocławWrocławPoland
  2. 2.Department of MathematicsUniversity of TurkuTurkuFinland
  3. 3.Academy of FinlandHelsinkiFinland

Personalised recommendations