Theory of Computing Systems

, Volume 48, Issue 2, pp 297–318 | Cite as

Beta-Shifts, Their Languages, and Computability

  • Jakob Grue SimonsenEmail author


For every real number β>1, the β-shift is a dynamical system describing iterations of the map x β x mod 1 and is studied intensively in number theory. Each β-shift has an associated language of finite strings of characters; properties of this language are studied for the additional insight they give into the dynamics of the underlying system.

We prove that the language of the β-shift is recursive iff β is a computable real number. That fact yields a precise characterization of the reals: The real numbers β for which we can compute arbitrarily good approximations—hence in particular the numbers for which we can compute their expansion to some base—are precisely those for which there exists a program that decides for any finite sequence of digits whether the sequence occurs as a subword of some element of the β-shift.

While the “only if” part of the proof of the above result is constructive, the “if” part is not. We show that no constructive proof of the “if” part exists. Hence, there exists no algorithm that transforms a program computing arbitrarily good approximations of a real number β into a program deciding the language of the β-shift.


Computability theory Dynamical systems Number theory Computable analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adamczewski, B., Bugeaud, Y.: Dynamics for β-shifts and diophantine approximation. Ergod. Theory Dyn. Syst. 27, 1–17 (2007) CrossRefMathSciNetGoogle Scholar
  2. 2.
    Barnsley, M.: Fractals Everywhere. Morgan Kaufmann, San Mateo (1993) zbMATHGoogle Scholar
  3. 3.
    Berthé, V., Rigo, M.: Abstract numeration systems and tilings. In: Proceedings of the 30th International Symposium on Mathematical Foundations of Computer Science (MFCS’05). Lecture Notes in Computer Science, vol. 3618, pp. 131–143. Springer, Berlin (2005) Google Scholar
  4. 4.
    Bishop, E., Bridges, D.: Constructive Analysis. Grundlehren der mathematischen Wissenschaften, vol. 279. Springer, Berlin (1985) zbMATHGoogle Scholar
  5. 5.
    Blanchard, F.: β-expansions and symbolic dynamics. Theor. Comput. Sci. 65, 131–141 (1989) zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Bridges, D., Richman, F.: Varieties of Constructive Mathematics. London Mathematical Society Lecture Notes Series, vol. 97. Cambridge University Press, Cambridge (1987) zbMATHGoogle Scholar
  7. 7.
    Dajani, K., de Vries, M.: Measures of maximal entropy for random β-expansions. J. Eur. Math. Soc. 1, 51–68 (2005) CrossRefGoogle Scholar
  8. 8.
    Dajani, K., Kraaikamp, C.: Ergodic Theory of Numbers. The Carus Mathematical Monographs, vol. 29. The Mathematical Association of America, Washington (2002) zbMATHGoogle Scholar
  9. 9.
    Frougny, C., Gazeau, J.-P., Krejcar, R.: Additive and multiplicative properties of point sets based on beta-integers. Theor. Comput. Sci. 303(2–3), 491–516 (2003) zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Frougny, C., Solomyak, B.: Finite beta-expansions. Ergod. Theory Dyn. Syst. 12, 713–723 (1992) zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Frougny, C., Surarerks, A.: On-line multiplication in real and complex base. In: Proceedings of the 16th IEEE Symposium on Computer Arithmetic (ARITH 16), pp. 212–219. IEEE Comput. Soc., Los Alamitos (2003) CrossRefGoogle Scholar
  12. 12.
    Hansel, G., Perrin, D., Simon, I.: Compression and entropy. In: Proceedings of the 9th Annual Symposium on Theoretical Aspects of Computer Science (STACS’92). Lecture Notes in Computer Science, vol. 577, pp. 515–528. Springer, Berlin (1992) Google Scholar
  13. 13.
    Hertling, P., Spandl, C.: Computability theoretic properties of the entropy of gap shifts. Fundam. Inform. 83(1–2), 141–157 (2008) zbMATHMathSciNetGoogle Scholar
  14. 14.
    Hochman, M., Meyerovitch, T.: A characterization of the entropies of multidimensional shifts of finite type. Ann. Math. (2009, to appear) Google Scholar
  15. 15.
    Hofbauer, F.: β-shifts have unique maximal measure. Mon.hefte Math. 85, 189–198 (1978) CrossRefMathSciNetGoogle Scholar
  16. 16.
    Ito, S., Takashi, Y.: Markov subshifts and realization of β-expansions. J. Math. Soc. Jpn. 26, 33–55 (1974) zbMATHCrossRefGoogle Scholar
  17. 17.
    Johnson, K.: Beta-shift dynamical systems and their associated languages. Ph.D. Thesis, University of North Carolina (1999) Google Scholar
  18. 18.
    Jones, N.: Computability and Complexity from a Programming Perspective. The MIT Press, Cambridge (1997) zbMATHGoogle Scholar
  19. 19.
    Ko, K.-I., Du, D.-Z.: Theory of Computational Complexity. Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley, New York (2000) zbMATHGoogle Scholar
  20. 20.
    Li, M., Vitányi, P.: An Introduction to Kolmogorov Complexity and Its Applications. Graduate Texts in Computer Science. Springer, Berlin (1997) zbMATHGoogle Scholar
  21. 21.
    Lind, D.: The entropies of topological Markov shifts and a related class of algebraic integers. Ergod. Theory Dyn. Syst. 4, 283–300 (1984) zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Lind, D., Marcus, B.: An Introduction to Symbolic Dynamics and Coding. Cambridge University Press, Cambridge (1995) zbMATHCrossRefGoogle Scholar
  23. 23.
    Morse, M.: Recurrent geodesics on a surface of negative curvature. Trans. Am. Math. Soc. 22, 84–110 (1921) zbMATHMathSciNetGoogle Scholar
  24. 24.
    Odifreddi, P.: Classical Recursion Theory, vol. I. Studies in Logic and the Foundations of Mathematics, vol. 129. North-Holland, Amsterdam (1989) Google Scholar
  25. 25.
    Parry, W.: On the β-expansion of real numbers. Acta Math. Acad. Sci. Hung. 11, 401–416 (1960) zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Rényi, A.: Representations for real numbers and their ergodic properties. Acta Math. Acad. Sci. Hung. 8, 477–493 (1957) zbMATHCrossRefGoogle Scholar
  27. 27.
    Rogers, H., Jr.: Theory of Recursive Functions and Effective Computability. The MIT Press, Cambridge (1987). Paperback edition Google Scholar
  28. 28.
    Schmidt, K.: On periodic expansions of Pisot numbers and Salem numbers. Bull. Lond. Math. Soc. 12, 269–278 (1980) zbMATHCrossRefGoogle Scholar
  29. 29.
    Sidorov, N.: Almost every number has a continuum of beta-expansions. Am. Math. Mon. 110, 838–842 (2003) zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Sidorov, N.: Arithmetic dynamics. In: Topics in Dynamics and Ergodic Theory. London Mathematical Society Lecture Notes Series, vol. 310, pp. 145–189. London Mathematical Society, London (2003) Google Scholar
  31. 31.
    Simonsen, J.: On beta-shifts having arithmetical languages. In: Proceedings of the 30th International Symposium on Mathematical Foundations of Computer Science (MFCS 2005). Lecture Notes in Computer Science, vol. 3618, pp. 757–768. Springer, Berlin (2005) CrossRefGoogle Scholar
  32. 32.
    Simonsen, J.: On the computability of the topological entropy of subshifts. Discrete Math. Theor. Comput. Sci. 8, 83–96 (2006) zbMATHMathSciNetGoogle Scholar
  33. 33.
    Simonsen, J.: Beta-shifts, their languages and computability. Technical Report, Department of Computer Science, University of Copenhagen (DIKU) (2008) Google Scholar
  34. 34.
    Simonsen, J.: On the computational complexity of languages of general symbolic dynamical systems and beta-shifts. Theor. Comput. Sci. 410, 4878–4891 (2009) zbMATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Spandl, C.: Computing the topological entropy of shifts. Electr. Notes Theor. Comput. Sci. 167, 131–155 (2007) CrossRefMathSciNetGoogle Scholar
  36. 36.
    Specker, E.: Nicht konstruktiv beweisbare Sätze der Analysis. J. Symb. Log. 14, 145–158 (1949) zbMATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    Takahashi, Y.: Shift with free orbit basis and realization of one-dimensional maps. Osaka J. Math. 20, 599–629 (1983) zbMATHMathSciNetGoogle Scholar
  38. 38.
    Turing, A.: On computable numbers with an application to the “entscheidungsproblem”. Proc. Lond. Math. Soc. 42(2), 230–265 (1936) zbMATHGoogle Scholar
  39. 39.
    Turing, A.: On computable numbers with an application to the “entscheidungsproblem”. A correction. Proc. Lond. Math. Soc. 43(2), 544–546 (1937) zbMATHGoogle Scholar
  40. 40.
    Walters, P.: An Introduction to Ergodic Theory. Graduate Texts in Mathematics, vol. 79. Springer, Berlin (1981) Google Scholar
  41. 41.
    Weihrauch, K.: Computable Analysis: An Introduction. Springer, Berlin (1998) Google Scholar
  42. 42.
    Zheng, X., Weihrauch, K.: The arithmetical hierarchy of real numbers. Math. Log. Q. 47(1), 51–65 (2001) zbMATHCrossRefMathSciNetGoogle Scholar
  43. 43.
    Ziegler, M., Brattka, V.: Computability in linear algebra. Theor. Comput. Sci. 326, 187–211 (2004) zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of Copenhagen (DIKU)CopenhagenDenmark

Personalised recommendations