Theory of Computing Systems

, Volume 46, Issue 3, pp 499–522 | Cite as

Arithmetizing Classes Around \(\textsf{NC}\) 1 and \(\textsf{L}\)

  • Nutan Limaye
  • Meena Mahajan
  • B. V. Raghavendra Rao


The parallel complexity class \(\textsf{NC}\) 1 has many equivalent models such as polynomial size formulae and bounded width branching programs. Caussinus et al. (J. Comput. Syst. Sci. 57:200–212, 1992) considered arithmetizations of two of these classes, \(\textsf{\#NC}\) 1 and \(\textsf{\#BWBP}\) . We further this study to include arithmetization of other classes. In particular, we show that counting paths in branching programs over visibly pushdown automata is in \(\textsf{FLogDCFL}\) , while counting proof-trees in logarithmic width formulae has the same power as \(\textsf{\#NC}\) 1. We also consider polynomial-degree restrictions of \(\textsf{SC}\) i , denoted \(\textsf{sSC}\) i , and show that the Boolean class \(\textsf{sSC}\) 1 is sandwiched between \(\textsf{NC}\) 1 and \(\textsf{L}\) , whereas \(\textsf{sSC}\) 0 equals \(\textsf{NC}\) 1. On the other hand, the arithmetic class \(\textsf{\#sSC}\) 0 contains \(\textsf{\#BWBP}\) and is contained in \(\textsf{FL}\) , and \(\textsf{\#sSC}\) 1 contains \(\textsf{\#NC}\) 1 and is in \(\textsf{SC}\) 2. We also investigate some closure properties of the newly defined arithmetic classes.


Bounded-width circuits Branching programs Circuit degree Arithmetization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agrawal, M., Allender, E., Datta, S.: On TC0, AC0, and arithmetic circuits. J. Comput. Syst. Sci. 60(2), 395–421 (2000) zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Allender, E.: The division breakthroughs. Bull. Eur. Assoc. Theor. Comput. Sci. 74 (2001) Google Scholar
  3. 3.
    Allender, E.: Arithmetic circuits and counting complexity classes. In: Krajicek, J. (ed.) Complexity of Computations and Proofs. Quaderni di Matematica, vol. 13, 33–72. Seconda Universita di Napoli, Naples (2004). An earlier version appeared in the Complexity Theory Column, SIGACT News 28(4) 2–15 (1997) Google Scholar
  4. 4.
    Allender, E., Jiao, J., Mahajan, M., Vinay, V.: Non-commutative arithmetic circuits: depth reduction and size lower bounds. Theor. Comput. Sci. 209, 47–86 (1998) zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Alur, R., Madhusudan, P.: Visibly pushdown languages. In: Proceedings of the ACM Symposium on Theory of Computing STOC, pp. 202–211 (2004) Google Scholar
  6. 6.
    Alur, R., Kumar, V., Madhusudan, P., Viswanathan, M.: Congruences for visibly pushdown languages. In: Proceedings of the 32nd International Colloquium on Automata, Languages, and Programming (ICALP), pp. 1102–1114 (2005) Google Scholar
  7. 7.
    Barrington, D.A.M.: Bounded-width polynomial-size branching programs recognize exactly those languages in NC1. J. Comput. Syst. Sci. 38(1), 150–164 (1989) zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Borodin, A., Cook, S., Dymond, P., Ruzzo, W., Tompa, M.: Two applications of inductive counting for complementation problems. SIAM J. Comput. 18(3), 559–578 (1989) zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Buss, S.: The Boolean formula value problem is in ALOGTIME. In: Proceedings of the ACM Symposium on Theory of Computing STOC, pp. 123–131 (1987) Google Scholar
  10. 10.
    Buss, S., Cook, S., Gupta, A., Ramachandran, V.: An optimal parallel algorithm for formula evaluation. SIAM J. Comput. 21(4), 755–780 (1992) zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Caussinus, H., McKenzie, P., Thérien, D., Vollmer, H.: Nondeterministic NC1 computation. J. Comput. Syst. Sci. 57, 200–212 (1998) zbMATHCrossRefGoogle Scholar
  12. 12.
    Chiu, A., Davida, G., Litow, B.: Division in logspace-uniform NC1. RAIRO Theor. Inf. Appl. 35, 259–276 (2001) zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Cook, S.: Characterizations of pushdown machines in terms of time-bounded computers. J. Assoc. Comput. Mach. 18, 4–18 (1971) zbMATHMathSciNetGoogle Scholar
  14. 14.
    Cook, S.: Deterministic CFL’s are accepted simultaneously in polynomial time and log squared space. In: Proceedings of the ACM Symposium on Theory of Computing STOC, pp. 338–345 (1979) Google Scholar
  15. 15.
    Dymond, P.W.: Input-driven languages are in log n depth. Inf. Process. Lett. 26, 247–250 (1988) CrossRefMathSciNetGoogle Scholar
  16. 16.
    Dymond, P.W., Cook, S.: Complexity theory of parallel time and hardware. Inf. Comput. 80, 205–226 (1989) zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Fernau, H., Lange, K.-J., Reinhardt, K.: Advocating ownership. In: Proceedings of the 16th Foundations of Software Technology and Theoretical Computer Science Conference FST&TCS. LNCS, vol. 1180, pp. 286–297. Springer, Berlin (1996) Google Scholar
  18. 18.
    Holzer, M., Lange, K.-J.: On the complexities of linear LL(1) and LR(1) grammars. In: Proceedings of the 9th International Symposium on Fundamentals of Computation Theory FCT. LNCS, pp. 299–308. Springer, Berlin (1993) Google Scholar
  19. 19.
    Istrail, S., Zivkovic, D.: Bounded width polynomial size Boolean formulas compute exactly those functions in AC0. Inf. Process. Lett. 50, 211–216 (1994) zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Johnson, D.S.: A catalog of complexity classes. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science. Algorithms and Complexity (A), vol. A, pp. 67–161. Elsevier/MIT Press, Cambridge (1990) Google Scholar
  21. 21.
    Lange, K.-J.: Complexity and structure in formal language theory. In: Proceedings of the IEEE Structure in Complexity Theory Conference, pp. 224–230 (1993) Google Scholar
  22. 22.
    Limaye, N., Mahajan, M., Rao, B.V.R.: Arithmetizing classes around NC1 and AC1. In: Proceedings of the 24th Annual Symposium on Theoretical Aspects of Computer Science STACS. LNCS, vol. 4393, pp. 477–488. Springer, Berlin (2007) Google Scholar
  23. 23.
    Limaye, N., Mahajan, M., Meyer, A.: On the complexity of membership and counting in height-deterministic pushdown automata. In: Proceedings of the 3nd International Computer Science Symposium in Russia. LNCS, vol. 5010. Springer, Berlin (2008) Google Scholar
  24. 24.
    Mahajan, M.: Polynomial size log depth circuits: between NC1 and AC1. Bull. Eur. Assoc. Theor. Comput. Sci. 91 (2007) Google Scholar
  25. 25.
    Mehlhorn, K.: Pebbling mountain ranges and its application to DCFL-recognition. In: Proceedings of the 7th International Colloquium on Automata, Languages, and Programming ICALP. LNCS, pp. 422–432. Springer, Berlin (1980) Google Scholar
  26. 26.
    Niedermeier, R., Rossmanith, P.: Unambiguous auxiliary pushdown automata and semi-unbounded fan-in circuits. Inf. Comput. 118(2), 227–245 (1995) zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Nisan, N.: RL ⊆ SC. Comput. Complex. 4(11), 1–11 (1994) zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Ruzzo, W.L.: Tree-size bounded alternation. J. Comput. Syst. Sci. 21, 218–235 (1980) zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Sudborough, I.: On the tape complexity of deterministic context-free language. J. Assoc. Comput. Mach. 25(3), 405–414 (1978) zbMATHMathSciNetGoogle Scholar
  30. 30.
    Venkateswaran, H.: Properties that characterize \(\textsf{LogCFL}\) . J. Comput. Syst. Sci. 42, 380–404 (1991) CrossRefMathSciNetGoogle Scholar
  31. 31.
    Vinay, V.: Counting auxiliary pushdown automata and semi-unbounded arithmetic circuits. In: Proceedings of 6th IEEE Structure in Complexity Theory Conference, pp. 270–284 (1991) Google Scholar
  32. 32.
    Vinay, V.: Hierarchies of circuit classes that are closed under complement. In: Proceedings of the 11th Annual IEEE Conference on Computational Complexity CCC, Washington, DC, USA, pp. 108–117 (1996) Google Scholar
  33. 33.
    Vollmer, H.: Introduction to Circuit Complexity: A Uniform Approach. Springer, New York (1999) Google Scholar
  34. 34.
    Von Braunmühl, B., Verbeek, R.: Input-driven languages are recognized in log n space. In: Proceedings of the Fundamentals of Computation Theory Conference FCT. LNCS, pp. 40–51. Springer, Berlin (1983) Google Scholar
  35. 35.
    Von zur Gathen, J.: Parallel linear algebra. In: Reif, J.H. (ed.) Synthesis of Parallel Algorithms, pp. 573–617. Morgan Kaufmann, San Mateo (1993) Google Scholar
  36. 36.
    Von zur Gathen, J., Seroussi, G.: Boolean circuits versus arithmetic circuits. Inf. Comput. 91(1), 142–154 (1991) zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Nutan Limaye
    • 1
  • Meena Mahajan
    • 1
  • B. V. Raghavendra Rao
    • 1
  1. 1.The Institute of Mathematical SciencesChennaiIndia

Personalised recommendations