Theory of Computing Systems

, Volume 48, Issue 1, pp 1–22 | Cite as

Performance of Scheduling Policies in Adversarial Networks with Non-synchronized Clocks

  • Antonio Fernández Anta
  • José Luis López-Presa
  • M. Araceli Lorenzo
  • Pilar Manzano
  • Juan Martinez-Romo
  • Alberto Mozo
  • Christopher Thraves


In this paper we generalize the Continuous Adversarial Queuing Theory (CAQT) model (Blesa et al. in MFCS, Lecture Notes in Computer Science, vol. 3618, pp. 144–155, 2005) by considering the possibility that the router clocks in the network are not synchronized. We name the new model Non Synchronized CAQT (NSCAQT). Clearly, this new extension to the model only affects those scheduling policies that use some form of timing. In a first approach we consider the case in which although not synchronized, all clocks run at the same speed, maintaining constant differences. In this case we show that all universally stable policies in CAQT that use the injection time and the remaining path to schedule packets remain universally stable. These policies include, for instance, Shortest in System (SIS) and Longest in System (LIS). Then, we study the case in which clock differences can vary over time, but the maximum difference is bounded. In this model we show the universal stability of two families of policies related to SIS and LIS respectively (the priority of a packet in these policies depends on the arrival time and a function of the path traversed). The bounds we obtain in this case depend on the maximum difference between clocks. This is a necessary requirement, since we also show that LIS is not universally stable in systems without bounded clock difference. We then present a new policy that we call Longest in Queues (LIQ), which gives priority to the packet that has been waiting the longest in edge queues. This policy is universally stable and, if clocks maintain constant differences, the bounds we prove do not depend on them. To finish, we provide with simulation results that compare the behavior of some of these policies in a network with stochastic injection of packets.


Scheduling Continuous adversarial queuing theory Adversarial models Clock skew Clock drift Clock synchronization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andrews, M.: Instability of FIFO in the permanent sessions model at arbitrarily small network loads. In: Bansal, N., Pruhs, K., Clifford, S. (eds.) SODA, pp. 219–228. SIAM, Philadelphia (2007) Google Scholar
  2. 2.
    Andrews, M., Zhang, L.: The effects of temporary sessions on network performance. SIAM J. Comput. 33(3), 659–673 (2004) zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Andrews, M., Awerbuch, B., Fernández, A., Kleinberg, J., Leighton, T., Liu, Z.: Universal stability results and performance bounds for greedy contention-resolution protocols. J. ACM 48(1), 39–69 (2001) MathSciNetGoogle Scholar
  4. 4.
    Andrews, M., Fernández, A., Goel, A., Zhang, L.: Source routing and scheduling in packet networks. J. ACM 52(4), 582–601 (2005) MathSciNetGoogle Scholar
  5. 5.
    Blesa, M.J., Calzada, D., Fernández Anta, A., López, L., Martínez, A.L., Santos, A., Serna, M.J., Thraves, C.: Adversarial queuing model for continuous network dynamics. Theor. Comput. Syst. 44(3), 304–331 (2009) zbMATHCrossRefGoogle Scholar
  6. 6.
    Borodin, A., Kleinberg, J., Raghavan, P., Sudan, M., Williamson, D.P.: Adversarial queuing theory. J. ACM 48(1), 13–38 (2001) MathSciNetGoogle Scholar
  7. 7.
    Cruz, R.L.: A calculus for network delay, part I: network elements in isolation. IEEE Trans. Inf. Theory 37(1), 114–131 (1991) zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Cruz, R.L.: A calculus for network delay, part II: network analysis. IEEE Trans. Inf. Theory 37(1), 132–141 (1991) zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
  10. 10.
    Le Boudec, J.-Y., Thiran, P.: Network Calculus: A Theory of Deterministic Queuing Systems for the Internet. Lecture Notes in Computer Science. Springer, Berlin (2001) Google Scholar
  11. 11.
    Parekh, A.K., Gallager, R.G.: A generalized processor sharing approach to flow control in integrated services networks: the single-node case. IEEE/ACM Trans. Netw. 1(3), 344–357 (1993) CrossRefGoogle Scholar
  12. 12.
    Parekh, A.K., Gallager, R.G.: A generalized processor sharing approach to flow control in integrated services networks: the multiple-node case. IEEE/ACM Trans. Netw. 2(2), 137–150 (1994) CrossRefGoogle Scholar
  13. 13.
    Santos, A., Fernández Anta, A., López, L.: Evaluation of packet scheduling policies with application to real-time traffic. In: Actas de las V Jornadas de Ingeniería Telemática, JITEL (2005) Google Scholar
  14. 14.
    Weinard, M.: The necessity of timekeeping in adversarial queuing. In: Nikoletseas, S.E. (ed.) WEA. Lecture Notes in Computer Science, vol. 3503, pp. 440–451. Springer, Berlin (2005) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Antonio Fernández Anta
    • 1
  • José Luis López-Presa
    • 2
  • M. Araceli Lorenzo
    • 3
  • Pilar Manzano
    • 3
  • Juan Martinez-Romo
    • 4
  • Alberto Mozo
    • 3
  • Christopher Thraves
    • 5
  1. 1.LADyR, GSyCUniversidad Rey Juan CarlosMadridSpain
  2. 2.EUITTUniversidad Politécnica de MadridMadridSpain
  3. 3.EUIUniversidad Politécnica de MadridMadridSpain
  4. 4.ETSIIUniversidad Nacional de Educación a DistanciaMadridSpain
  5. 5.LaBRIUniversité Bordeaux ITalenceFrance

Personalised recommendations