Theory of Computing Systems

, Volume 46, Issue 4, pp 636–661 | Cite as

Self-Referential Justifications in Epistemic Logic

Article

Abstract

This paper is devoted to the study of self-referential proofs and/or justifications, i.e., valid proofs that prove statements about these same proofs. The goal is to investigate whether such self-referential justifications are present in the reasoning described by standard modal epistemic logics such as  \(\mathsf{S4}\) . We argue that the modal language by itself is too coarse to capture this concept of self-referentiality and that the language of justification logic can serve as an adequate refinement. We consider well-known modal logics of knowledge/belief and show, using explicit justifications, that \(\mathsf{S4}\) , \(\mathsf{D4}\) , \(\mathsf{K4}\) , and  \(\mathsf{T}\) with their respective justification counterparts  \(\mathsf{LP}\) , \(\mathsf{JD4}\) , \(\mathsf{J4}\) , and  \(\mathsf{JT}\) describe knowledge that is self-referential in some strong sense. We also demonstrate that self-referentiality can be avoided for  \(\mathsf{K}\) and  \(\mathsf{D}\) .

In order to prove the former result, we develop a machinery of minimal evidence functions used to effectively build models for justification logics. We observe that the calculus used to construct the minimal functions axiomatizes the reflected fragments of justification logics. We also discuss difficulties that result from an introduction of negative introspection.

Keywords

Self-referentiality Justification logic Epistemic modal logic Logic of Proofs 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Artemov, S.N.: Operational modal logic. Technical Report MSI 95–29, Cornell University, December 1995 Google Scholar
  2. 2.
    Artemov, S.N.: Explicit provability and constructive semantics. Bull. Symb. Log. 7(1), 1–36 (2001) MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Artemov, S.N.: The logic of justification. Technical Report TR-2008010, CUNY Ph.D. Program in Computer Science, September 2008 Google Scholar
  4. 4.
    Brezhnev, V.N., Kuznets, R.: Making knowledge explicit: How hard it is. Theor. Comput. Sci. 357(1–3), 23–34 (2006) MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Brezhnev, V.N.: On explicit counterparts of modal logics. Technical Report CFIS 2000–05, Cornell University, 2000 Google Scholar
  6. 6.
    Chagrov, A., Zakharyaschev, M.: Modal Logic. Oxford Logic Guides, vol. 35. Oxford University Press, Oxford (1997) MATHGoogle Scholar
  7. 7.
    Fine, K.: Normal forms in modal logic. Notre Dame J. Form. Log. 16(2), 229–237 (1975) MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Fitting, M.: The logic of proofs, semantically. Ann. Pure Appl. Log. 132(1), 1–25 (2005) MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Fitting, M.: Modal proof theory. In: Blackburn, P., van Benthem, J., Wolter, F. (eds.) Handbook of Modal Logic. Studies in Logic and Practical Reasoning, vol. 3, pp. 85–138. Elsevier, Amsterdam (2007) CrossRefGoogle Scholar
  10. 10.
    Gettier, E.L.: Is justified true belief knowledge? Analysis 23(6), 121–123 (1963) CrossRefGoogle Scholar
  11. 11.
    Goble, L.F.: Gentzen systems for modal logic. Notre Dame J. Form. Log. 15(3), 455–461 (1974) MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Goldman, A.I.: A causal theory of knowing. J. Philos. 64(12), 357–372 (1967) CrossRefGoogle Scholar
  13. 13.
    Hendricks, V.F.: Active agents. J. Log. Lang. Inform. 12(4), 469–495 (2003) MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Krupski, N.V.: On the complexity of the reflected logic of proofs. Theor. Comput. Sci. 357(1–3), 136–142 (2006) MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Kuznets, R.: On self-referentiality in modal logic. In: 2005–06 Winter Meeting of the Association for Symbolic Logic, The Hilton New York Hotel, New York, NY, December 27–29, 2005. Bull. Symb. Log., vol. 12(3), p. 510. Association for Symbolic Logic, September 2006 Google Scholar
  16. 16.
    Kuznets, R.: Complexity issues in justification logic. PhD thesis, CUNY Graduate Center, May 2008 Google Scholar
  17. 17.
    Kuznets, R.: Self-referentiality of justified knowledge. In: Hirsch, E.A., Razborov, A.A., Semenov, A., Slissenko, A. (eds.) Proceedings of the Third International Computer Science Symposium in Russia, CSR 2008, Moscow, Russia, June 7–12, 2008. Lecture Notes in Computer Science, vol. 5010, pp. 228–239. Springer, Berlin (2008) Google Scholar
  18. 18.
    Lehrer, K., Paxson, T. Jr.: Knowledge: Undefeated justified true belief. J. Philos. 66(8), 225–237 (1969) CrossRefGoogle Scholar
  19. 19.
    Mkrtychev, A.: Models for the logic of proofs. In: Adian, S., Nerode, A. (eds.) Proceedings of the 4th International Symposium Logical Foundations of Computer Science, LFCS’97, Yaroslavl, Russia, July 6–12, 1997. Lecture Notes in Computer Science, vol. 1234, pp. 266–275. Springer, Berlin (1997) Google Scholar
  20. 20.
    Pacuit, E.: A note on some explicit modal logics. In: Proceedings of the 5th Panhellenic Logic Symposium, Athens, Greece, July 25–28, 2005, pp. 117–125. University of Athens, Athens (2005) Google Scholar
  21. 21.
    Rubtsova, N.: Evidence reconstruction of epistemic modal logic \(\mathsf{S5}\) . In: Grigoriev, D., Harrison, J., Hirsch, E.A. (eds.) Proceedings of the First International Computer Science Symposium in Russia, CSR 2006, St. Petersburg, Russia, June 8–12, 2006. Lecture Notes in Computer Science, vol. 3967, pp. 313–321. Springer, Berlin (2006) Google Scholar
  22. 22.
    Smoryński, C.: Self-Reference and Modal Logic. Universitext. Springer, Berlin (1985) MATHGoogle Scholar
  23. 23.
    Troelstra, A.S., Schwichtenberg, H.: Basic Proof Theory, 2nd edn. Cambridge Tracts in Theoretical Computer Science, vol. 43. Cambridge University Press, Cambridge (2000) MATHGoogle Scholar
  24. 24.
    Valentini, S.: The sequent calculus for the modal logic D. Boll. Unione Mat. Ital. Sez. A 7, 455–460 (1993) MATHMathSciNetGoogle Scholar
  25. 25.
    Wansing, H.: Sequent calculi for normal modal propositional logics. J. Log. Comput. 4(2), 125–142 (1994) MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Institut für Informatik und angewandte MathematikUniversität BernBernSwitzerland

Personalised recommendations