Theory of Computing Systems

, Volume 47, Issue 1, pp 113–136 | Cite as

Congestion Games with Linearly Independent Paths: Convergence Time and Price of Anarchy

Article

Abstract

We investigate the effect of linear independence in the strategies of congestion games on the convergence time of best improvement sequences and on the pure Price of Anarchy. In particular, we consider symmetric congestion games on extension-parallel networks, an interesting class of networks with linearly independent paths, and establish two remarkable properties previously known only for parallel-link games. We show that for arbitrary (non-negative and non-decreasing) latency functions, any best improvement sequence reaches a pure Nash equilibrium in at most as many steps as the number of players, and that for latency functions in class \(\mathcal{D}\) , the pure Price of Anarchy is at most \(\rho(\mathcal{D})\) , i.e. it is bounded by the Price of Anarchy for non-atomic congestion games. As a by-product of our analysis, we obtain that for symmetric network congestion games with latency functions in class \(\mathcal{D}\) , the Price of Stability is at most \(\rho(\mathcal{D})\) .

Keywords

Network congestion games Best response dynamics Price of anarchy Price of stability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ackermann, H., Röglin, H., Vöcking, B.: On the impact of combinatorial structure on congestion games. In: Proc. of the 47th IEEE Symp. on Foundations of Computer Science (FOCS ’06), pp. 613–622 (2006) Google Scholar
  2. 2.
    Ackermann, H., Röglin, H., Vöcking, B.: Pure Nash equilibria in player-specific and weighted congestion games. In: Proc. of the 2nd Workshop on Internet and Network Economics (WINE ’06). LNCS, vol. 4286, pp. 50–61 (2006) Google Scholar
  3. 3.
    Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and Applications. Prentice Hall, New York (1993) Google Scholar
  4. 4.
    Aland, S., Dumrauf, D., Gairing, M., Monien, B., Schoppmann, F.: Exact price of anarchy for polynomial congestion games. In: Proc. of the 23st Annual Symposium on Theoretical Aspects of Computer Science (STACS ’06). LNCS, vol. 3884, pp. 218–229 (2006) Google Scholar
  5. 5.
    Anshelevich, E., Dasgupta, A., Kleinberg, J., Tardos, É., Wexler, T., Roughgarden, T., The price of stability for network design with fair cost allocation. SIAM J. Comput. (2009, to appear). Preliminary version in Proc. of the 45th IEEE Symp. on Foundations of Computer Science (FOCS ’04), pp. 295–304 (2004) Google Scholar
  6. 6.
    Awerbuch, B., Azar, Y., Epstein, A.: The price of routing unsplittable flow. In: Proc. of the 37th ACM Symp. on Theory of Computing (STOC ’05), pp. 57–66 (2005) Google Scholar
  7. 7.
    Caragiannis, I., Flammini, M., Kaklamanis, C., Kanellopoulos, P., Moscardelli, L.: Tight bounds for selfish and greedy load balancing. (2007, submitted). Preliminary version in Proc. of the 33th International Colloquium on Automata, Languages and Programming (ICALP ’06). LNCS, vol. 4051, pp. 311–322 (2006) Google Scholar
  8. 8.
    Chien, S., Sinclair, A.: Convergence to approximate Nash equilibria in congestion games. In: Proc. of the 18th ACM-SIAM Symposium on Discrete Algorithms (SODA ’07), pp. 169–178 (2007) Google Scholar
  9. 9.
    Christodoulou, G., Koutsoupias, E.: The price of anarchy of finite congestion games. In: Proc. of the 37th ACM Symp. on Theory of Computing (STOC ’05), pp. 67–73 (2005) Google Scholar
  10. 10.
    Christodoulou, G., Koutsoupias, E.: On the price of anarchy and stability of correlated equilibria of linear congestion games. In: Proc. of the 13th European Symposium on Algorithms (ESA ’05). LNCS, vol. 3669, pp. 59–70 (2005) Google Scholar
  11. 11.
    Correa, J.R., Schulz, A.S., Stier Moses, N.E.: Selfish routing in capacitated networks. Math. Oper. Res. 29(4), 961–976 (2004) MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Epstein, A., Feldman, M., Mansour, Y.: Efficient graph topologies in network routing games. In: Joint Workshop on Economics of Networked Systems and Incentive-Based Computing (NetEcon+IBC ’07) (2007) Google Scholar
  13. 13.
    Epstein, A., Feldman, M., Mansour, Y.: Strong equilibrium in cost sharing connection games. In: Proc. of the 8th ACM Conference on Electronic Commerce (EC ’07), pp. 84–92 (2007) Google Scholar
  14. 14.
    Even-Dar, E., Kesselman, A., Mansour, Y.: Convergence time to Nash equilibria in load balancing. ACM Trans. Algorithms 3(3) (2007) Google Scholar
  15. 15.
    Fabrikant, A., Papadimitriou, C., Talwar, K.: The complexity of pure Nash equilibria. In: Proc. of the 36th ACM Symp. on Theory of Computing (STOC ’04), pp. 604–612 (2004) Google Scholar
  16. 16.
    Fotakis, D.: Stackelberg strategies for atomic congestion games. In: Proc. of the 15th European Symposium on Algorithms (ESA ’07). LNCS, vol. 4698, pp. 299–310 (2007) Google Scholar
  17. 17.
    Gairing, M., Lücking, T., Mavronicolas, M., Monien, B., Rode, M.: Nash equilibria in discrete routing games with convex latency functions. In: Proc. of the 31th International Colloquium on Automata, Languages and Programming (ICALP ’04). LNCS, vol. 3142, pp. 645–657 (2004) Google Scholar
  18. 18.
    Gairing, M., Lücking, T., Monien, B., Tiemann, K.: Nash equilibria, the price of anarchy and the fully mixed Nash equilibrium conjecture. In: Proc. of the 32th International Colloquium on Automata, Languages and Programming (ICALP ’05). LNCS, vol. 3580, pp. 51–65 (2005) Google Scholar
  19. 19.
    Holzman, R., Law-Yone, N.: Strong equilibrium in congestion games. Games Econ. Behav. 21, 85–101 (1997) MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Holzman, R., Law-Yone (Lev-tov), N.: Network structure and strong equilibrium in route selection games. Math. Soc. Sci. 46, 193–205 (2003) MATHCrossRefGoogle Scholar
  21. 21.
    Ieong, S., McGrew, R., Nudelman, E., Shoham, Y., Sun, Q.: Fast and compact: A simple class of congestion games. In: 20th National Conference on Artificial Intelligence (AAAI ’05), pp. 489–494 (2005) Google Scholar
  22. 22.
    Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. In: Proc. of the 16th Annual Symposium on Theoretical Aspects of Computer Science (STACS ’99). LNCS, vol. 1563, pp. 404–413 (1999) Google Scholar
  23. 23.
    Lücking, T., Mavronicolas, M., Monien, B., Rode, M.: A new model for selfish routing. In: Proc. of the 21st Annual Symposium on Theoretical Aspects of Computer Science (STACS ’04). LNCS, vol. 2996, pp. 547–558 (2004) Google Scholar
  24. 24.
    Milchtaich, I.: Network topology and the efficiency of equilibrium. Games Econ. Behav. 57, 321–346 (2006) MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Milchtaich, I.: The equilibrium existence problem in finite network congestion games. In: Proc. of the 2nd Workshop on Internet and Network Economics (WINE ’06). LNCS, vol. 4286, pp. 87–98 (2006) Google Scholar
  26. 26.
    Rosenthal, R.W.: A class of games possessing pure-strategy Nash equilibria. Int. J. Game Theory 2, 65–67 (1973) MATHCrossRefGoogle Scholar
  27. 27.
    Roughgarden, T.: The price of anarchy is independent of the network topology. J. Comput. Syst. Sci. 67(2), 341–364 (2003) MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Roughdarden, T., Tardos, É.: How bad is selfish routing? J. ACM 49(2), 236–259 (2002) CrossRefMathSciNetGoogle Scholar
  29. 29.
    Suri, S., Tóth, C.D., Zhou, Y.: Selfish load balancing and atomic congestion games. Algorithmica 47(1), 79–96 (2007) MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.School of Electrical and Computer EngineeringNational Technical University of AthensAthensGreece

Personalised recommendations