Advertisement

Theory of Computing Systems

, Volume 46, Issue 4, pp 620–635 | Cite as

Comparing Universal Covers in Polynomial Time

  • Jiří FialaEmail author
  • Daniël Paulusma
Article

Abstract

The universal cover T G of a connected graph G is the unique (possibly infinite) tree covering G, i.e., that allows a locally bijective homomorphism from T G to G. It is well-known that if a graph G covers a graph H, then their universal covers are isomorphic, and that the latter can be tested in polynomial time by checking if G and H share the same degree refinement matrix. We extend this result to locally injective and locally surjective homomorphisms by following a very different approach. Using linear programming techniques we design two polynomial time algorithms that check if there exists a locally injective or a locally surjective homomorphism, respectively, from a universal cover T G to a universal cover T H (both given by their degree matrices). This way we obtain two heuristics for testing the corresponding locally constrained graph homomorphisms. Our algorithm can also be used for testing (subgraph) isomorphism between universal covers, and for checking if there exists a locally injective or locally surjective homomorphism (role assignment) from a given tree to an arbitrary graph H.

Keywords

Graph homomorphism Universal cover Computational complexity Degree matrix 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abello, J., Fellows, M.R., Stillwell, J.C.: On the complexity and combinatorics of covering finite complexes. Aust. J. Comb. 4, 103–112 (1991) zbMATHMathSciNetGoogle Scholar
  2. 2.
    Angluin, D.: Local and global properties in networks of processors. In: Proceedings of the 12th ACM Symposium on Theory of Computing, pp. 82–93 (1980) Google Scholar
  3. 3.
    Angluin, D., Gardiner, A.: Finite common coverings of pairs of regular graphs. J. Comb. Theory B 30, 184–187 (1981) zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Biggs, N.: Algebraic Graph Theory. Cambridge University Press, Cambridge (1974) zbMATHGoogle Scholar
  5. 5.
    Biggs, N.: Constructing 5-arc transitive cubic graphs. J. Lond. Math. Soc. II 26, 193–200 (1982) zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Bodlaender, H.L.: The classification of coverings of processor networks. J. Parallel Distrib. Comput. 6, 166–182 (1989) CrossRefGoogle Scholar
  7. 7.
    Bodlaender, H.L.: A tourist guide through treewidth. Acta Cybern. 11(1–2), 1–22 (1993) zbMATHMathSciNetGoogle Scholar
  8. 8.
    Bondy, J.A., Murty, U.S.R.: Graph Theory with Applications. American Elsevier, New York (1976) Google Scholar
  9. 9.
    Chalopin, J., Métivier, Y., Zielonka, W.: Local computations in graphs: the case of cellular edge local computations. Fundam. Inform. 74(1), 85–114 (2006) zbMATHGoogle Scholar
  10. 10.
    Dantchev, S., Martin, B.D., Stewart, I.A.: On non-definability of unsatisfiability. Manuscript Google Scholar
  11. 11.
    Edmonds, J., Karp, R.M.: Theoretical improvements in algorithmic efficiency for network flow problems. J. ACM 19, 248–264 (1972) zbMATHCrossRefGoogle Scholar
  12. 12.
    Everett, M.G., Borgatti, S.: Role colouring a graph. Math. Soc. Sci. 21(2), 183–188 (1991) zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Fiala, J., Kratochvíl, J.: Complexity of partial covers of graphs. In: Eades, P., Takaoka, T. (eds.) ISAAC. Lecture Notes in Computer Science, vol. 2223, pp. 537–549. Springer, New York (2001) Google Scholar
  14. 14.
    Fiala, J., Kratochvíl, J.: Partial covers of graphs. Discuss. Math. Graph Theory 22, 89–99 (2002) zbMATHMathSciNetGoogle Scholar
  15. 15.
    Fiala, J., Maxová, J.: Cantor-Bernstein type theorem for locally constrained graph homomorphisms. Eur. J. Comb. 7(27), 1111–1116 (2006) CrossRefGoogle Scholar
  16. 16.
    Fiala, J., Paulusma, D.: A complete complexity classification of the role assignment problem. Theor. Comput. Sci. 1(349), 67–81 (2005) CrossRefMathSciNetGoogle Scholar
  17. 17.
    Fiala, J., Paulusma, D.: Comparing universal covers in polynomial time. In: Hirsch, E.A., Razborov, A.A., Semenov, A.L., Slissenko, A. (eds.) CSR. Lecture Notes in Computer Science, vol. 5010, pp. 158–167. Springer, Berlin (2008) Google Scholar
  18. 18.
    Fiala, J., Kratochvíl, J., Kloks, T.: Fixed-parameter complexity of λ-labelings. Discrete Appl. Math. 113(1), 59–72 (2001) zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Fiala, J., Heggernes, P., Kristiansen, P., Telle, J.A.: Generalized H-coloring and H-covering of trees. Nord. J. Comput. 10(3), 206–224 (2003) zbMATHMathSciNetGoogle Scholar
  20. 20.
    Fiala, J., Golovach, P.A., Kratochvíl, J.: Distance constrained labelings of graphs of bounded treewidth. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP. Lecture Notes in Computer Science, vol. 3580, pp. 360–372. Springer, New York (2005) Google Scholar
  21. 21.
    Fiala, J., Paulusma, D., Telle, J.A.: Locally constrained graph homomorphism and equitable partitions. Eur. J. Comb. 29(4), 850–880 (2008) zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Godsil, C.D.: Algebraic Combinatorics. Chapman and Hall, New York (1993) zbMATHGoogle Scholar
  23. 23.
    Hell, P., Nešetřil, J.: Graphs and Homomorphisms. Oxford University Press, Oxford (2004) zbMATHCrossRefGoogle Scholar
  24. 24.
    Hoffman, A.J., Kruskal, J.G.: Integral boundary points of convex polyhedra. Ann. Math. Stud. 38, 223–246 (1956) zbMATHMathSciNetGoogle Scholar
  25. 25.
    Kranakis, E., Krizanc, D., van den Berg, J.: Computing Boolean functions on anonymous networks. Inf. Comput. 114(2), 214–236 (1994) zbMATHCrossRefGoogle Scholar
  26. 26.
    Kratochvíl, J., Proskurowski, A., Telle, J.A.: Covering directed multigraphs I. Colored directed multigraphs. In: Möhring, R.H. (ed.) WG. Lecture Notes in Computer Science, vol. 1335, pp. 242–257. Springer, Berlin (1997) Google Scholar
  27. 27.
    Kratochvíl, J., Proskurowski, A., Telle, J.A.: Covering regular graphs. J. Comb. Theory, Ser. B 71(1), 1–16 (1997) zbMATHCrossRefGoogle Scholar
  28. 28.
    Kristiansen, P., Telle, J.A.: Generalized H-coloring of graphs. In: Lee, D.T., Teng, S.-H. (eds.) ISAAC. Lecture Notes in Computer Science, vol. 1969, pp. 456–466. Springer, Berlin (2000) Google Scholar
  29. 29.
    Leighton, F.T.: Finite common coverings of graphs. J. Comb. Theory B 33, 231–238 (1982) zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Massey, W.S.: Algebraic Topology: An Introduction. Harcourt, Brace and World, New York (1967) zbMATHGoogle Scholar
  31. 31.
    Moore, E.F.: Gedanken-experiments on sequential machines. In: Automata Studies. Annals of Mathematics Studies, vol. 34, pp. 129–153. Princeton University Press, Princeton (1956) Google Scholar
  32. 32.
    Nešetřil, J.: Homomorphisms of derivative graphs. Discrete Math. 1(3), 257–268 (1971) zbMATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Norris, N.: Universal covers of graphs: isomorphism to depth n−1 implies isomorphism to all depths. Discrete Appl. Math. 56(1), 61–74 (1995) zbMATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Pekeč, A., Roberts, F.S.: The role assignment model nearly fits most social networks. Math. Soc. Sci. 41(3), 275–293 (2001) zbMATHCrossRefGoogle Scholar
  35. 35.
    Reidemeister, K.: Einführung in die kombinatorische Topologie. Braunschweig: Friedr. Vieweg & Sohn A.-G. XII, 209 S. (1932) Google Scholar
  36. 36.
    Roberts, F.S., Sheng, L.: How hard is it to determine if a graph has a 2-role assignment? Networks 37(2), 67–73 (2001) zbMATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    Schwenk, A.J.: Computing the characteristic polynomial of a graph. In: Graphs and Combinatorics. Lecture Notes in Mathematics, vol. 406, pp. 153–172. Springer, Berlin (1974) CrossRefGoogle Scholar
  38. 38.
    Shamir, R., Tsur, D.: Faster subtree isomorphism. J. Algorithms 33(2), 267–280 (1999) zbMATHCrossRefMathSciNetGoogle Scholar
  39. 39.
    Yamashita, M., Kameda, T.: Computing on anonymous networks: Part I—characterizing the solvable cases. IEEE Trans. Parallel Distrib. Syst. 7(1), 69–89 (1996) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Faculty of Mathematics and Physics, DIMATIA and Institute for Theoretical Computer Science (ITI)Charles UniversityPragueCzech Republic
  2. 2.Science Laboratories, Department of Computer ScienceDurham UniversityDurhamEngland

Personalised recommendations