Advertisement

Theory of Computing Systems

, Volume 47, Issue 2, pp 491–506 | Cite as

On the Automatizability of Polynomial Calculus

  • Nicola Galesi
  • Massimo Lauria
Article

Abstract

We prove that Polynomial Calculus and Polynomial Calculus with Resolution are not automatizable, unless W[P]-hard problems are fixed parameter tractable by one-side error randomized algorithms. This extends to Polynomial Calculus the analogous result obtained for Resolution by Alekhnovich and Razborov (SIAM J. Comput. 38(4):1347–1363, 2008).

Keywords

Automatizability Polynomial calculus Proof complexity Degree lower bound 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alekhnovich, M., Razborov, A.A.: Lower bounds for polynomial calculus: Non-binomial case. In: 42nd Annual Symposium on Foundations of Computer Science, pp. 190–199 (2001) Google Scholar
  2. 2.
    Alekhnovich, M., Razborov, A.A.: Resolution is not automatizable unless W[P] is tractable. SIAM J. Comput. 38(4), 1347–1363 (2008) zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Alon, N.: Tools from higher algebra. In: Handbook of Combinatorics, vol. 2, pp. 1749–1783. MIT Press, Cambridge (1995) Google Scholar
  4. 4.
    Atserias, A., Bonet, M.L.: On the automatizability of resolution and related propositional proof systems. Inf. Comput. 189(2), 182–201 (2004) zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Beame, P., Pitassi, T.: Simplified and improved resolution lower bounds. In: 37th Annual Symposium on Foundations of Computer Science, pp. 274–282. IEEE Press, New York (1996) Google Scholar
  6. 6.
    Ben-Sasson, E., Wigderson, A.: Short proofs are narrow—resolution made simple. In: Proceedings of the Thirty-First Annual ACM Symposium on Theory of Computing, pp. 517–526 (1999) Google Scholar
  7. 7.
    Bonet, M.L., Domingo, C., Gavaldà, R., Maciel, A., Pitassi, T.: Non-automatizability of bounded-depth frege proofs. Comput. Complex. 13(1–2), 47–68 (2004) zbMATHCrossRefGoogle Scholar
  8. 8.
    Bonet, M.L., Pitassi, T., Raz, R.: On interpolation and automatization for frege systems. SIAM J. Comput. 29(6), 1939–1967 (2000) zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Clegg, M., Edmonds, J., Impagliazzo, R.: Using the Groebner basis algorithm to find proofs of unsatisfiability. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing, pp. 174–183 (1996) Google Scholar
  10. 10.
    Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, 3rd edn. Springer, New York (2007) zbMATHGoogle Scholar
  11. 11.
    Downey, R., Fellows, M.: Parameterized Complexity. Springer, New York (1999) Google Scholar
  12. 12.
    Galesi, N., Lauria, M.: Degree lower bounds for a graph ordering principle. Submitted. See http://www.dsi.uniroma1.it/~galesi/publications.html
  13. 13.
    Haken, A.: The intractability of resolution. Theor. Comput. Sci. 39, 297–308 (1985) zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Impagliazzo, R., Pudlák, P., Sgall, J.: Lower bounds for the polynomial calculus and the Gröbner basis algorithm. Comput. Complex. 8(2), 127–144 (1999) zbMATHCrossRefGoogle Scholar
  15. 15.
    Jukna, S.: Extremal Combinatorics: with Applications in Computer Science. Springer, New York (2001) zbMATHGoogle Scholar
  16. 16.
    Krajícek, J.: Interpolation and approximate semantic derivations. Math. Log. Q. 48(4), 602–606 (2002) zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Krajícek, J., Pudlák, P.: Some consequences of cryptographical conjectures for S 21 and ef. In: Leivant, D. (ed.) LCC. Lecture Notes in Computer Science, vol. 960, pp. 210–220. Springer, Berlin (1994) Google Scholar
  18. 18.
    Pitassi, T.: Algebraic propositional proof systems. In: Immerman, N., Kolaitis, P.G. (eds.) Descriptive Complexity and Finite Models. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 31, pp. 215–244. Am. Math. Soc., Providence (1996) Google Scholar
  19. 19.
    Pudlák, P.: On reducibility and symmetry of disjoint np-pairs. Theor. Comput. Sci. 295, 626–638 (2003) CrossRefGoogle Scholar
  20. 20.
    Pudlák, P., Sgall, J.: Algebraic models of computation and interpolation for algebraic proof systems. DIMACS Ser. Theor. Comput. Sci. 39, 279–296 (1998) Google Scholar
  21. 21.
    Razborov, A.A.: Lower bounds for the polynomial calculus. Comput. Complex. 7(4), 291–324 (1998) zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    van Lint, J.H.: Introduction to Coding Theory, 3rd edn. Graduate Texts in Mathematics. Springer, New York (1998) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Computer ScienceSapienza—Università di RomaRomaItaly

Personalised recommendations