Theory of Computing Systems

, 46:143 | Cite as

Does the Polynomial Hierarchy Collapse if Onto Functions are Invertible?

  • Harry Buhrman
  • Lance Fortnow
  • Michal Koucký
  • John D. Rogers
  • Nikolay Vereshchagin
Open Access


The class TFNP, defined by Megiddo and Papadimitriou, consists of multivalued functions with values that are polynomially verifiable and guaranteed to exist. Do we have evidence that such functions are hard, for example, if TFNP is computable in polynomial-time does this imply the polynomial-time hierarchy collapses? By computing a multivalued function in deterministic polynomial-time we mean on every input producing one of the possible values of the function on that input.

We give a relativized negative answer to this question by exhibiting an oracle under which TFNP functions are easy to compute but the polynomial-time hierarchy is infinite. We also show that relative to this same oracle, P≠UP and TFNPNP functions are not computable in polynomial-time with an NP oracle.


Computational complexity Polynomial-time hierarchy Multi-valued functions Kolmogorov complexity 


  1. 1.
    Baker, T., Gill, J., Solovay, R.: Relativization of P=NP question. SIAM J. Comput. 4(4), 431–442 (1975) CrossRefMathSciNetMATHGoogle Scholar
  2. 2.
    Bellare, M., Goldwasser, S.: The complexity of decision versus search. SIAM J. Comput. 23(1), 97–119 (1994) CrossRefMathSciNetMATHGoogle Scholar
  3. 3.
    Fenner, S., Fortnow, L., Naik, A., Rogers, J.: Inverting onto functions. Inf. Comput. 186, 90–103 (2003) CrossRefMathSciNetMATHGoogle Scholar
  4. 4.
    Fortnow, L., Rogers, J.: Separability and one-way functions. Comput. Complex. 11, 137–157 (2003) CrossRefMathSciNetGoogle Scholar
  5. 5.
    Grollman, J., Selman, A.: Complexity measures for public-key cryptosystems. SIAM J. Comput. 17(2), 309–335 (1988) CrossRefMathSciNetGoogle Scholar
  6. 6.
    Håstad, J.: Almost optimal lower bounds for small depth circuits. Adv. Comput. Res. 5, 143–170 (1989) Google Scholar
  7. 7.
    Impagliazzo, R., Naor, M.: Decision trees and downward closures. In: Proceedings of the 3rd IEEE Structure in Complexity Theory Conference, pp. 29–38. IEEE, New York (1988) CrossRefGoogle Scholar
  8. 8.
    Kolmogorov, A.N.: Three approaches to the quantitative definition of information. Probl. Inf. Trans. 1(1), 1–7 (1965) MathSciNetGoogle Scholar
  9. 9.
    Li, M., Vitányi, P.: An Introduction to Kolmogorov Complexity and Its Applications, 2nd edn. Graduate Texts in Computer Science. Springer, New York (1997) MATHGoogle Scholar
  10. 10.
    Megiddo, N., Papadimitriou, C.: On total functions, existence theorems and computational complexity. Theor. Comput. Sci. 81(2), 317–324 (1991) CrossRefMathSciNetMATHGoogle Scholar
  11. 11.
    Meyer, A., Stockmeyer, L.: The equivalence problem for regular expressions with squaring requires exponential space. In: Proceedings of the 13th IEEE Symposium on Switching and Automata Theory, pp. 125–129. IEEE, New York (1972) CrossRefGoogle Scholar
  12. 12.
    Muchnik, A., Vereshchagin, N.: A general method to construct oracles realizing given relationships between complexity classes. Theor. Comput. Sci. 157, 227–258 (1996) CrossRefMathSciNetMATHGoogle Scholar
  13. 13.
    Papadimitriou, C.: Computational Complexity. Addison-Wesley, New York (1994) MATHGoogle Scholar
  14. 14.
    Sipser, M.: Borel sets and circuit complexity. In: Proceedings of the 15th ACM Symposium on the Theory of Computing, pp. 61–69. ACM, New York (1983) Google Scholar
  15. 15.
    Sipser, M.: Introduction to the Theory of Computation. PWS, Boston (1997) MATHGoogle Scholar
  16. 16.
    Solomonoff, R.J.: A formal theory of inductive inference, parts 1 and 2. Inf. Control 7, 1–22, 224–254 (1964) CrossRefMathSciNetMATHGoogle Scholar

Copyright information

© The Author(s) 2008

Authors and Affiliations

  • Harry Buhrman
    • 1
  • Lance Fortnow
    • 2
  • Michal Koucký
    • 3
  • John D. Rogers
    • 4
  • Nikolay Vereshchagin
    • 5
  1. 1.CWI and University of AmsterdamAmsterdamThe Netherlands
  2. 2.University of ChicagoChicagoUSA
  3. 3.Institute of Mathematics, Academy of Sciences of the Czech RepublicPragueCzech Republic
  4. 4.DePaul UniversityChicagoUSA
  5. 5.Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations