Equivalence Problems for Circuits over Sets of Natural Numbers

  • Christian Glaßer
  • Katrin Herr
  • Christian Reitwießner
  • Stephen Travers
  • Matthias Waldherr
Article

Abstract

We investigate the complexity of equivalence problems for {∪,∩,,+,×}-circuits computing sets of natural numbers. These problems were first introduced by Stockmeyer and Meyer (1973). We continue this line of research and give a systematic characterization of the complexity of equivalence problems over sets of natural numbers. Our work shows that equivalence problems capture a wide range of complexity classes like NL, C=L, P,Π2P, PSPACE, NEXP, and beyond. McKenzie and Wagner (2003) studied related membership problems for circuits over sets of natural numbers. Our results also have consequences for these membership problems: We provide an improved upper bound for the case of {∪,∩,,+,×}-circuits.

Keywords

Computational complexity Combinatorial integer circuits Algorithms 

References

  1. 1.
    Àlvarez, C., Balcázar, J.L., Jenner, B.: Adaptive logspace reducibility and parallel time. Math. Syst. Theory 28(2), 117–140 (1995) MATHCrossRefGoogle Scholar
  2. 2.
    Allender, E.: Making computation count: Arithmetic circuits in the nineties. SIGACT News 28(4), 2–15 (1997) CrossRefGoogle Scholar
  3. 3.
    Allender, E., Ogihara, M.: Relationships among PL, #L, and the determinant. RAIRO Theor. Inform. Appl. 30, 1–21 (1996) MATHMathSciNetGoogle Scholar
  4. 4.
    Breunig, H.: The complexity of membership problems for circuits over sets of positive numbers. In: Proceedings International Conference on Fundamentals of Computation Theory. Lecture Notes in Computer Science, vol. 4639, pp. 125–136. Springer, Berlin (2007) CrossRefGoogle Scholar
  5. 5.
    Bach, E., Shallit, J.: Algorithmic Number Theory. Efficient Algorithms of Foundations of Computing, vol. I. MIT Press, Cambridge (1996) MATHGoogle Scholar
  6. 6.
    Ko, K.: Some observations on the probabilistic algorithms and NP-hard problems. Inf. Process. Lett. 14(1), 39–43 (1982) MATHCrossRefGoogle Scholar
  7. 7.
    Meyer, A.R., Stockmeyer, L.J.: The equivalence problem for regular expressions with squaring requires exponential time. In: Proceedings 13th Symposium on Switching and Automata Theory, pp. 125–129. IEEE Computer Society, Los Alamitos (1972) CrossRefGoogle Scholar
  8. 8.
    Mckenzie, P., Wagner, K.W.: The complexity of membership problems for circuits over sets of natural numbers. Comput. Complex. 16(3), 211–244 (2007) MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Schönhage, A.: On the power of random access machines. In: ICALP, pp. 520–529 (1979) Google Scholar
  10. 10.
    Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time. In: Proceedings 5th ACM Symposium on the Theory of Computing, pp. 1–9. ACM, New York (1973) Google Scholar
  11. 11.
    Travers, S.: The complexity of membership problems for circuits over sets of integers. Theor. Comput. Sci. 369(1), 211–229 (2006) MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Wagner, K.: The complexity of problems concerning graphs with regularities. In: Proceedings Mathematical Foundations of Computer Science. Lecture Notes in Computer Science, vol. 176, pp. 544–552. Springer, Berlin (1984) Google Scholar
  13. 13.
    Wagner, K.W., Wechsung, G.: On the boolean closure of NP. In: Proceedings International Conference on Fundamentals of Computation Theory. Lecture Notes in Computer Science, vol. 199, pp. 485–493. Springer, Berlin (1985) Google Scholar
  14. 14.
    Yang, K.: Integer circuit evaluation is PSPACE-complete. In: IEEE Conference on Computational Complexity, pp. 204–213 (2000) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Christian Glaßer
    • 1
  • Katrin Herr
    • 1
  • Christian Reitwießner
    • 1
  • Stephen Travers
    • 1
  • Matthias Waldherr
    • 1
  1. 1.Julius-Maximilians-Universität Würzburg, Theoretische InformatikWürzburgGermany

Personalised recommendations