Theory of Computing Systems

, Volume 46, Issue 2, pp 340–350 | Cite as

Computing Interpolating Sequences

Article
  • 49 Downloads

Abstract

Naftalevič’s Theorem states that, given a Blaschke sequence, it is possible to modify the arguments of its terms so as to obtain an interpolating sequence. We prove a computable version of this theorem in that it possible, given a Blaschke sequence, to computably modify the arguments of its terms so as to obtain an interpolating sequence. Using this result, we produce a computable, interpolating Blaschke sequence that does not define a computable Blaschke product. This answers a question posed by Matheson and McNicholl in a recent paper. We use Type-Two Effectivity as our foundation.

Keywords

Computable analysis Complex analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Carleson, L.: An interpolation problem for bounded analytic functions. Am. J. Math. 80, 921–930 (1958) MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Cochran, W.G.: Random Blaschke products. Trans. Am. Math. Soc. 322, 731–755 (1990) MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Garnett, J.B.: Bounded Analytic Functions. Academic Press, New York (1981) MATHGoogle Scholar
  4. 4.
    Matheson, A., McNicholl, T.H.: Computable analysis and Blaschke products. Proc. Am. Math. Soc. 1, 321–332 (2008) (electronic) CrossRefMathSciNetGoogle Scholar
  5. 5.
    McNicholl, T.H.: Uniformly computable aspects of inner functions. In: Dillhage, R., Grubba, T., Sorbi, A., Weihrauch, K., Zhong, N. (eds.) Fourth International Conference on Computability and Complexity in Analysis. Informatik Berichte, vol. 338, pp. 251–263. FernUniversität, Hagen (2007) Google Scholar
  6. 6.
    Naftalevič, A.G.: On interpolation by functions of bounded characteristic. Vilniaus Valst. Univ. Mokslų Darbai Mat. Fiz. Chem. Mokslų Ser., 5, 5–27 (1956) Google Scholar
  7. 7.
    Rudin, W.: Real and Complex Analysis, 3rd edn. McGraw-Hill, New York (1996) Google Scholar
  8. 8.
    Soare, R.I.: Recursively Enumerable Sets and Degrees. Springer, Berling (1987) Google Scholar
  9. 9.
    Specker, E.: Nicht konstruktiv beweisbare Sätze der Analysis. J. Symb. Log. 14, 145–158 (1949) MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Vasjunin, V.I.: Circular projections of sets that occur in the theory of interpolation. Zap. Naučn. Semin. Leningr. Otd. Ordena Lenina Mat. Inst. Im. V.A. Steklova Akad. Nauk SSSR (LOMI) 92(318), 51–59 (1979) MathSciNetGoogle Scholar
  11. 11.
    Weihrauch, K.: Computable Analysis, an Introduction. Springer, New York (2000) MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of MathematicsLamar UniversityBeaumontUSA

Personalised recommendations