Theory of Computing Systems

, Volume 46, Issue 2, pp 311–339 | Cite as

W-Hierarchies Defined by Symmetric Gates

  • Michael Fellows
  • Jörg Flum
  • Danny Hermelin
  • Moritz Müller
  • Frances Rosamond
Article

Abstract

The classes of the W-hierarchy are the most important classes of intractable problems in parameterized complexity. These classes were originally defined via the weighted satisfiability problem for Boolean circuits. Here, besides the Boolean connectives we consider connectives such as majority, not-all-equal, and unique. For example, a gate labelled by the majority connective outputs true if more than half of its inputs are true. For any finite set \(\mathcal{C}\) of connectives we construct the corresponding W( \(\mathcal{C}\) )-hierarchy. We derive some general conditions which guarantee that the W-hierarchy and the W( \(\mathcal{C}\) )-hierarchy coincide levelwise. If \(\mathcal{C}\) only contains the majority connective then the first levels of the hierarchies coincide. We use this to show that a variant of the parameterized vertex cover problem, the majority vertex cover problem, is W[1]-complete.

Keywords

Parameterized complexity W-hierarchy Symmetric gates Bounded weft circuits 

References

  1. 1.
    Abrahamson, K.A., Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness IV: on completeness for W[P] and PSPACE analogs. Ann. Pure Appl. Log. 73, 235–276 (1995) MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Cai, L., Chen, J., Downey, R.G., Fellows, M.R.: On the parameterized complexity of short computation and factorization. Arch. Math. Log. 36, 321–337 (1997) MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Chen, Y., Flum, J.: The parameterized complexity of maximality and minimality problems. Ann. Pure Appl. Log. 151, 22–61 (2007) CrossRefMathSciNetGoogle Scholar
  4. 4.
    Chen, Y., Flum, J., Grohe, M.: Machine-based methods in parameterized complexity theory. Theor. Comput. Sci. 339, 167–199 (2005) MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Berlin (1999) Google Scholar
  6. 6.
    Downey, R.G., Fellows, M., Langston, M.A. (guest eds.): Special Issue on Parameterized Complexity, Part I and Part II. Comput. J. 51(1, 3) (2008) Google Scholar
  7. 7.
    Downey, R.G., Fellows, M.R., Taylor, U.: The parameterized complexity of relational database queries and an improved characterization of W[1]. In: Bridges, D.S., Calude, C., Gibbons, P., Reeves, S., Witten, I.H. (eds.) Combin. Complex. Log. 39, 194–213 (1996) Google Scholar
  8. 8.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Berlin (2006) Google Scholar
  9. 9.
    Marx, D.: Parameterized complexity of independence and domination on geometric graphs. In: Proceedings of the Second International Workshop on Parameterized and Exact Computation (IWPEC). LNCS, vol. 4169, pp. 154–165. Springer, Berlin (2006) CrossRefGoogle Scholar
  10. 10.
    Melhorn, K.: Data Structures and Algorithms, Vol. 2: NP-Completeness and Graph Algorithms. EATCS Monographs on Theoretical Computer Science. Springer, Berlin (1984) Google Scholar
  11. 11.
    Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press, London (2006) MATHCrossRefGoogle Scholar
  12. 12.
    Sipser, M.: Borel sets and circuit complexity. In: Proc. of the 15th Annual ACM Symposium on the Theory of Computing, pp. 61–69 (1983) Google Scholar
  13. 13.
    Spira, P.M.: On time hardware complexity tradeoffs for Boolean functions. In: Proceedings of the Fourth Hawaii International Symposium on System Sciences, pp. 525–527 (1971) Google Scholar
  14. 14.
    Wegener, I.: Relating monotone formula size and monotone depth of Boolean functions. Inf. Process. Lett. 16, 41–42 (1983) MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Michael Fellows
    • 1
  • Jörg Flum
    • 2
  • Danny Hermelin
    • 3
  • Moritz Müller
    • 2
  • Frances Rosamond
    • 4
  1. 1.Research UnitUniversity of NewcastleNewcastleAustralia
  2. 2.Mathematics DepartmentUniversity of FreiburgFreiburgGermany
  3. 3.Caesaria Rothschild InstituteUniversity of HaifaHaifaIsrael
  4. 4.Parameterized Complexity Research UnitUniversity of NewcastleNewcastleAustralia

Personalised recommendations