On the Complexity of Matrix Rank and Rigidity

  • Meena Mahajan
  • Jayalal M. N. Sarma


We revisit a well studied linear algebraic problem, computing the rank and determinant of matrices, in order to obtain completeness results for small complexity classes. In particular, we prove that computing the rank of a class of diagonally dominant matrices is complete for \(\textsf{L}\) . We show that computing the permanent and determinant of tridiagonal matrices over ℤ is in \(\textsf {Gap} \textsf {NC}^{1}\) and is hard for \(\textsf {NC}^{1}\) . We also initiate the study of computing the rigidity of a matrix: the number of entries that needs to be changed in order to bring the rank of a matrix below a given value. We show that some restricted versions of the problem characterize small complexity classes. We also look at a variant of rigidity where there is a bound on the amount of change allowed. Using ideas from the linear interval equations literature, we show that this problem is \(\textsf {NP}\) -hard over ℚ and that a certain restricted version is \(\textsf {NP}\) -complete. Restricting the problem further, we obtain variations which can be computed in \(\textsf {PL}\) and are hard for \(\textsf {C}_{=}\textsf {L}\) .


Complexity classes Matrix rank Determinant Matrix rigidity 


  1. 1.
    Allender, E., Ambainis, A., Mix Barrington, D.A., Datta, S., LeThanh, H.: Bounded-depth arithmetic circuits: counting and closure. In: Proc. 26th ICALP. Lecture Notes in Computer Science, vol. 1644, pp. 149–158. Springer, Berlin (1999) Google Scholar
  2. 2.
    Allender, E., Arvind, V., Mahajan, M.: Arithmetic complexity, Kleene closure, and formal power series. Theory Comput. Syst. 36(4), 303–328 (2003) CrossRefMathSciNetzbMATHGoogle Scholar
  3. 3.
    Allender, E., Beals, R., Ogihara, M.: The complexity of matrix rank and feasible systems of linear equations. Comput. Complex. 8(2), 99–126 (1999) CrossRefMathSciNetzbMATHGoogle Scholar
  4. 4.
    Àlvarez, C., Greenlaw, R.: A compendium of problems complete for symmetric logarithmic space. Comput. Complex., 9, 73–95 (2000) CrossRefGoogle Scholar
  5. 5.
    Allender, E.: Arithmetic circuits and counting complexity classes. In: Krajicek, J. (ed.) Complexity of Computations and Proofs. Quaderni di Matematica, vol. 13, pp. 33–72. Seconda Universita di Napoli, Napoli (2004) Google Scholar
  6. 6.
    Allender, E., Ogihara, M.: Relationships among PL, #l, and the determinant. RAIRO Theor. Inform. Appl. 30(1), 1–21 (1996) MathSciNetzbMATHGoogle Scholar
  7. 7.
    Buntrock, G., Damm, C., Hertrampf, U., Meinel, C.: Structure and importance of logspace MOD-classes. Math. Syst. Theory 25, 223–237 (1992) CrossRefMathSciNetzbMATHGoogle Scholar
  8. 8.
    Buss, J.F., Frandsen, G.S., Shallit, J.: The computational complexity of some problems of linear algebra. J. Comput. Syst. Sci. 58, 572–596 (1999) CrossRefMathSciNetzbMATHGoogle Scholar
  9. 9.
    Bollobas, B.: Modern Graph Theory. GTM, vol. 184. Springer, Berlin (1984) Google Scholar
  10. 10.
    Cook, S.A., McKenzie, P.: Problems complete for L. J. Algorithms 8, 385–394 (1987) CrossRefMathSciNetzbMATHGoogle Scholar
  11. 11.
    Caussinus, H., McKenzie, P., Thérien, D., Vollmer, H.: Nondeterministic \(\textsf{NC}^{1}\) computation. J. Comput. Syst. Sci. 57, 200–212 (1998) CrossRefzbMATHGoogle Scholar
  12. 12.
    Dahl, G.: A note on nonnegative diagonally dominant matrices. Linear Algebra Appl. 317, 217–224 (1999) CrossRefMathSciNetGoogle Scholar
  13. 13.
    Damm, C.: DET = L(#L). Technical Report Informatik-Preprint 8, Fachbereich Informatik der Humboldt–Universität zu Berlin (1991) Google Scholar
  14. 14.
    Deshpande, A.: Sampling-based dimension reduction algorithms. PhD thesis, MIT, May 2007 Google Scholar
  15. 15.
    Geelen, J.F.: Maximum rank matrix completion. Linear Algebra Appl. 288(1–3), 211–217 (1999) CrossRefMathSciNetzbMATHGoogle Scholar
  16. 16.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, New York (1979) zbMATHGoogle Scholar
  17. 17.
    Grigoriev, D.Y.: Using the Notions of Separability and Independence for Proving the Lower Bounds on the Circuit Complexity. Notes of the Leningrad Branch of the Steklov Mathematical Institute. Nauka, Moscow (1976) (in Russian) Google Scholar
  18. 18.
    Kulkarni, R.: Personal communication, January 2007 Google Scholar
  19. 19.
    Laurent, M.: Matrix completion problems. In: Floudas, C.A., Pardalos, P.M. (eds.) The Encyclopedia of Optimization, vol. 3, pp. 221–229. Kluwer, Dordrecht (2001) Google Scholar
  20. 20.
    Lokam, S.V.: Spectral methods for matrix rigidity with applications to size-depth tradeoffs and communication complexity. In: Proc. 36th FOCS, pp. 6–15, 1995; J. Comput. Syst. Sci. 63(3):449–473 (2001) Google Scholar
  21. 21.
    Marcus, M., Minc, H.: A Survey of Matrix Theory and Matrix inequalities. The Prindle, Weber and Schmidt Complementary Series in Mathematics, vol. 14. Allyn and Bacon, Boston (1964) zbMATHGoogle Scholar
  22. 22.
    Mulmuley, K.: A fast parallel algorithm to compute the rank of a matrix over an arbitrary field. Combinatorica 7, 101–104 (1987) CrossRefMathSciNetzbMATHGoogle Scholar
  23. 23.
    Murota, K.: Mixed matrices—irreducibility and decomposition. In: Brualdi, R.A., Friedland, S., Klee, V. (eds.) Combinatorial and Graph-Theoretic Problems in Linear Algebra. The IMA Volumes in Mathematics and Its Applications, vol. 50, pp. 39–71. Springer, Berlin (1993) Google Scholar
  24. 24.
    Mahajan, M., Vinay, V.: Determinant: combinatorics, algorithms, complexity. Chic. J. Theor. Comput. Sci. 5 (1997) Google Scholar
  25. 25.
    Nisan, N., Ta-Shma, A.: Symmetric logspace is closed under complement. Chic. J. Theor. Comput. Sci., (1995). Google Scholar
  26. 26.
    Poljak, S., Rohn, J.: Checking robust nonsingularity is \(\textsf {NP}\) -hard. Math. Control Signals Syst. 6, 1–9 (1993) CrossRefMathSciNetzbMATHGoogle Scholar
  27. 27.
    Reingold, O.: Undirected st-conenctivity in logspace. In Proc. 37th STOC, pp. 376–385 (2005). Google Scholar
  28. 28.
    Rohn, J.: Systems of linear interval equations. Linear Algebra Appl. 126, 39–78 (1989) CrossRefMathSciNetzbMATHGoogle Scholar
  29. 29.
    Rohn, J.: Checking positive definiteness or stability of symmetric interval matrices is NP-hard. Comment. Math. Univ. Carol. 35, 795–797 (1994) MathSciNetzbMATHGoogle Scholar
  30. 30.
    Razborov, A.A., Rudich, S.: Natural proofs. J. Comput. Syst. Sci. 55(1), 24–35 (1997) CrossRefMathSciNetzbMATHGoogle Scholar
  31. 31.
    Toda, S.: Counting problems computationally equivalent to the determinant. Technical Report CSIM 91-07, Dept. of Comput. Sci. & Information Mathematics, Univ of Electro-Communications, Chofu-shi, Tokyo (1991) Google Scholar
  32. 32.
    Valiant, L.G.: Graph theoretic arguments in low-level complexity. In: Proc. 6th MFCS. Lecture Notes in Computer Science, vol. 53, pp. 162–176. Springer, Berlin (1977) Google Scholar
  33. 33.
    Valiant, L.G.: Why is Boolean complexity theory difficult? In: Proceedings of the London Mathematical Society symposium on Boolean function complexity, pp. 84–94. Cambridge University Press, New York (1992) Google Scholar
  34. 34.
    Vinay, V.: Counting auxiliary pushdown automata and semi-unbounded arithmetic circuits. In: Proc. 6th Structure in Complexity Theory Conference. Lecture Notes in Computer Science, vol. 223, pp. 270–284. Springer, Berlin (1991) CrossRefGoogle Scholar
  35. 35.
    Vollmer, H.: Introduction to Circuit Complexity: A Uniform Approach. Springer, Berlin (1999) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.The Institute of Mathematical SciencesChennaiIndia

Personalised recommendations