Theory of Computing Systems

, Volume 46, Issue 2, pp 222–245 | Cite as

On the Autoreducibility of Functions

  • Piotr Faliszewski
  • Mitsunori Ogihara


This paper studies the notions of self-reducibility and autoreducibility. Our main result regarding length-decreasing self-reducibility is that any complexity class \(\mathcal{C}\) that has a (logspace) complete language and is closed under polynomial-time (logspace) padding has the property that if all \(\mathcal{C}\) -complete languages are length-decreasing (logspace) self-reducible then \(\mathcal{C}\subseteq \mathrm {P}\) (\(\mathcal {C}\subseteq \mathrm {L}\) ). In particular, this result applies to NL, NP and PSPACE. We also prove an equivalent of this theorem for function classes (for example, for #P).

We also show that for several hard function classes, in particular for #P, it is the case that all their complete functions are deterministically autoreducible. In particular, we show the following result. Let f be a #P parsimonious function with two preimages of 0. We show that there are two FP functions h and t such that for all inputs x we have f(x)=t(x)+f(h(x)), h(x)≠x, and t(x)∈{0,1}. Our results regarding single-query autoreducibility of #P functions can be contrasted with random self-reducibility for which it is known that if a #P complete function were random self-reducible with one query then the polynomial hierarchy would collapse.


Autoreducibility Length-decreasing self-reducibility Reductions Function classes Complete functions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abadi, M., Feigenbaum, J., Kilian, J.: On hiding information from an oracle. J. Comput. Syst. Sci. 39(1), 21–50 (1989) zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Ambos-Spies, K.: P-mitotic sets. In: Logic and Machines, pp. 1–23. Springer, Berlin (1983) Google Scholar
  3. 3.
    Balcázar, J.: Self-reducibility. J. Comput. Syst. Sci. 41(3), 367–388 (1990) zbMATHCrossRefGoogle Scholar
  4. 4.
    Beigel, R., Feigenbaum, J.: On being incoherent without being very hard. Comput. Complex. 2(1), 1–17 (1992) zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Bovet, D., Crescenzi, P.: Introduction to the Theory of Complexity. Prentice-Hall, New York (1993) zbMATHGoogle Scholar
  6. 6.
    Buhrman, H., Torenvliet, L.: P-selective self-reducible sets: A new characterization of P. J. Comput. Syst. Sci. 53(2), 210–217 (1996) zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Buhrman, H., Fortnow, L., van Melkebeek, D., Torenvliet, L.: Separating complexity classes using autoreducibility. SIAM J. Comput. 29(4), 1497–1520 (2000) zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Feigenbaum, J., Fortnow, L.: Random-self-reducibility of complete sets. SIAM J. Comput. 22(5), 994–1005 (1993) zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Feigenbaum, J., Kannan, S., Nisan, N.: Lower bounds on random-self-reducibility. In: Proceedings of the 5th Structure in Complexity Theory Conference, pp. 100–109. IEEE Computer Society, Los Alamitos (1990) CrossRefGoogle Scholar
  10. 10.
    Feigenbaum, J., Fortnow, L., Lund, C., Spielman, D.: The power of adaptiveness and additional queries in random-self-reductions. In: Proceedings of the 7th Structure in Complexity Theory Conference, pp. 338–346. IEEE Computer Society, Los Alamitos (1992). Final version appears in Computational Complexity, vol. 4, pp. 158–174 (1994) CrossRefGoogle Scholar
  11. 11.
    Fenner, S., Fortnow, L., Kurtz, S.: Gap-definable counting classes. J. Comput. Syst. Sci. 48(1), 116–148 (1994) zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Gill, J.: Computational complexity of probabilistic Turing machines. SIAM J. Comput. 6(4), 675–695 (1977) zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Glaßer, C., Ogihara, M., Pavan, A., Selman, A., Zhang, L.: Autoreducibility, mitocity, and immunity. In: Proceedings of the 30th International Symposium on Mathematical Foundations of Computer Science. Lecture Notes in Computer Science, vol. 3153, pp. 387–398. Springer, Berlin (2005) CrossRefGoogle Scholar
  14. 14.
    Gupta, S.: On the closure of certain function classes under integer division by polynomially bounded functions. Inf. Process. Lett. 44(2), 205–210 (1992) zbMATHCrossRefGoogle Scholar
  15. 15.
    Gupta, S.: Closure properties and witness reduction. J. Comput. Syst. Sci. 50(3), 412–432 (1995) zbMATHCrossRefGoogle Scholar
  16. 16.
    Hemaspaandra, L., Ogihara, M.: The Complexity Theory Companion. Springer, New York (2002) zbMATHGoogle Scholar
  17. 17.
    Joseph, D., Young, P.: Some remarks on witness functions for non-polynomial and non-complete sets in NP. Theor. Comput. Sci. 39(2–3), 225–237 (1985) zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Köbler, J., Schöning, U., Torán, J.: On counting and approximation. Acta Inform. 26(4), 363–379 (1989) zbMATHMathSciNetGoogle Scholar
  19. 19.
    Krentel, M.: The complexity of optimization problems. J. Comput. Syst. Sci. 36(3), 490–509 (1988) zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Ladner, R.: Mitotic recursively enumerable sets. J. Symb. Log. 38(2), 199–211 (1973) zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Ladner, R., Lynch, N.: Relativization of questions about log space computability. Math. Syst. Theory 10(1), 19–32 (1976) zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Ladner, R., Lynch, N., Selman, A.: A comparison of polynomial time reducibilities. Theor. Comput. Sci. 1(2), 103–124 (1975) zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Lipton, R.: New directions in testing. In: Feigenbaum, J., Merritt, M. (eds.) Distributed Computing and Cryptography. DIMACS series in Discrete Mathematics and Theoretical Computer Science, pp. 191–202. American Mathematical Society, Providence (1991) Google Scholar
  24. 24.
    Meyer, A., Paterson, M.: With what frequency are apparently intractable problems difficult? Technical Report MIT/LCS/TM-126, Laboratory for Computer Science, MIT, Cambridge, MA (1979) Google Scholar
  25. 25.
    Ogiwara, M., Hemachandra, L.: A complexity theory for feasible closure properties. J. Comput. Syst. Sci. 46(3), 295–325 (1993) zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Pagourtzis, A., Zachos, S.: The complexity of counting functions with easy decision version. In: Proceedings of the 31st International Symposium on Mathematical Foundations of Computer Science. Lecture Notes in Computer Science, vol. 4162, pp. 741–752. Springer, Berlin (2006) Google Scholar
  27. 27.
    Papadimitriou, C.: Computational Complexity. Addison-Wesley, Reading (1994) zbMATHGoogle Scholar
  28. 28.
    Schnorr, C.: Optimal algorithms for self-reducible problems. In: Proceedings of the 3rd International Colloquium on Automata, Languages, and Programming, pp. 322–337. Edinburgh University Press, Edinburgh (1976) Google Scholar
  29. 29.
    Simon, J.: On some central problems in computational complexity. Ph.D. thesis, Cornell University, Ithaca, NY, January (1975). Available as Cornell Department of Computer Science Technical Report TR75-224 Google Scholar
  30. 30.
    Torán, J.: Complexity classes defined by counting quantifiers. J. ACM 38(3), 753–774 (1991) zbMATHCrossRefGoogle Scholar
  31. 31.
    Valiant, L.: The complexity of computing the permanent. Theor. Comput. Sci. 8(2), 189–201 (1979) zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Vollmer, H.: On different reducibility notions for function classes. In: Proceedings of the 11th Annual Symposium on Theoretical Aspects of Computer Science. Lecture Notes in Computer Science, vol. 775, pp. 449–460. Springer, Berlin (1994) Google Scholar
  33. 33.
    Wagner, K.: The complexity of combinatorial problems with succinct input representations. Acta Inform. 23(3), 325–356 (1986) zbMATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Watanabe, O., Toda, S.: Polynomial time 1-Turing reductions from #PH to #P. Theor. Comput. Sci. 100(1), 205–221 (1992) zbMATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Yao, A.: Coherent functions and program checkers. In: Proceedings of the 22nd ACM Symposium on Theory of Computing, pp. 84–94. Assoc. Comput. Mach., New York (1990) Google Scholar
  36. 36.
    Zankó, V.: #P-completeness via many-one reductions. Int. J. Found. Comput. Sci. 2(1), 76–82 (1991) CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of RochesterRochesterUSA
  2. 2.Department of Computer ScienceUniversity of MiamiCoral GablesUSA

Personalised recommendations