Theory of Computing Systems

, Volume 46, Issue 2, pp 174–192 | Cite as

A New Characterization of NP, P, and PSPACE with Accepting Hybrid Networks of Evolutionary Processors

  • Florin Manea
  • Maurice Margenstern
  • Victor Mitrana
  • Mario J. Pérez-Jiménez
Article

Abstract

We consider three complexity classes defined on Accepting Hybrid Networks of Evolutionary Processors (AHNEP) and compare them with the classical complexity classes defined on the standard computing model of Turing machine. By definition, AHNEPs are deterministic. We prove that the classical complexity class NP equals the family of languages decided by AHNEPs in polynomial time. A language is in P if and only if it is decided by an AHNEP in polynomial time and space. We also show that PSPACE equals the family of languages decided by AHNEPs in polynomial length.

Keywords

Evolution strategies Evolutionary processor Network of evolutionary processors Turing machine Computational complexity classes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Castellanos, J., Leupold, P., Mitrana, V.: On the size complexity of hybrid networks of evolutionary processors. Theor. Comput. Sci. 330, 205–220 (2005) MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Castellanos, J., Martín-Vide, C., Mitrana, V., Sempere, J.: Solving NP-complete problems with networks of evolutionary processors. In: International Work-Conference on Artificial and Natural Neural Networks (IWANN 2001), LNCS, vol. 2084, pp. 621–628. Springer, Berlin (2001) Google Scholar
  3. 3.
    Castellanos, J., Martín-Vide, C., Mitrana, V., Sempere, J.: Networks of evolutionary processors. Acta Inf. 39, 517–529 (2003) MATHGoogle Scholar
  4. 4.
    Csuhaj-Varjú, E., Mitrana, V.: Evolutionary systems: a language generating device inspired by evolving communities of cells. Acta Inf. 36, 913–926 (2000) MATHCrossRefGoogle Scholar
  5. 5.
    Csuhaj-Varjú, E., Martín-Vide, C., Mitrana, V.: Hybrid NEPs are computationally complete. Acta Inf. 41, 257–272 (2005) MATHCrossRefGoogle Scholar
  6. 6.
    Csuhaj-Varjú, E., Salomaa, A.: Networks of parallel language processors. In: Păun, G., Salomaa, A. (eds.) New Trends in Formal Languages, LNCS, vol. 1218, pp. 299–318. Springer, Berlin (1997) Google Scholar
  7. 7.
    Errico, L., Jesshope, C.: Towards a new architecture for symbolic processing. In: Artificial Intelligence and Information-Control Systems of Robots ’94, pp. 31–40. World Sci., Singapore (1994) Google Scholar
  8. 8.
    Fahlman, S.E., Hinton, G.E., Seijnowski, T.J.: Massively parallel architectures for AI: NETL, THISTLE and Boltzmann machines. In: Genesereth, M.R. (ed.) Proc. of the National Conference on Artificial Intelligence, pp. 109–113. AAAI Press, Menlo Park (1983) Google Scholar
  9. 9.
    Hartmanis, J., Lewis II, P.L., Stearns, R.: Hierarchies of memory limited computations. In: Proc. 6th Annual Symposium on Foundations of Computer Science, pp. 179–190. IEEE Press, New York (1965) Google Scholar
  10. 10.
    Hartmanis, J., Stearns, R.: On the computational complexity of algorithms. Trans. Am. Math. Soc. 117, 533–546 (1965) CrossRefMathSciNetGoogle Scholar
  11. 11.
    Hillis, W.D.: The Connection Machine. MIT Press, Cambridge (1985) Google Scholar
  12. 12.
    Manea, F., Martín-Vide, C., Mitrana, V.: Solving 3CNF-SAT and HPP in linear time using WWW. In: Machines, Computations, and Universality (MCU 2004), LNCS, vol. 3354, pp. 269–280. Springer, Berlin (2004) Google Scholar
  13. 13.
    Manea, F., Martín-Vide, C., Mitrana, V.: A universal accepting hybrid network of evolutionary processors. Electron. Not. Theor. Comput. Sci. 135, 95–105 (2005) CrossRefGoogle Scholar
  14. 14.
    Martín-Vide, C., Mitrana, V., Perez-Jimenez, M., Sancho-Caparrini, F.: Hybrid networks of evolutionary processors. In: Genetic and Evolutionary Computation (GECCO 2003), LNCS, vol. 2723, pp. 401–412. Springer, Berlin (2003) CrossRefGoogle Scholar
  15. 15.
    Sankoff, D., Leduc, G., Antoine, N., Paquin, B., Lang, B.F., Cedergren, R.: Gene order comparisons for phylogenetic inference: evolution of the mitochondrial genome. Proc. Nat. Acad. Sci. USA 89, 6575–6579 (1992) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Florin Manea
    • 1
  • Maurice Margenstern
    • 2
  • Victor Mitrana
    • 1
    • 3
  • Mario J. Pérez-Jiménez
    • 4
  1. 1.Faculty of Mathematics and Computer ScienceUniversity of BucharestBucharestRomania
  2. 2.LITA, UFR MIMUniversity of MetzMetz-CedexFrance
  3. 3.Research Group in Mathematical LinguisticsUniversity Rovira i VirgiliTarragonaSpain
  4. 4.Department of Computer Science and Artificial IntelligenceUniversity of SevilleSevilleSpain

Personalised recommendations