Theory of Computing Systems

, Volume 44, Issue 2, pp 143–159 | Cite as

On Embedding a Graph in the Grid with the Maximum Number of Bends and Other Bad Features

  • Giuseppe Di Battista
  • Fabrizio Frati
  • Maurizio Patrignani
Article
  • 62 Downloads

Abstract

Graph Drawing is (usually) concerned with the production of readable representations of graphs. In this paper, instead of investigating how to produce “good” drawings we tackle the opposite problem of producing “bad” drawings. In particular, we study how to construct orthogonal drawings with many bends along the edges and with large area. Our results show surprising contact points, in Graph Drawing, between the computational cost of niceness and the one of ugliness.

Keywords

Graph Drawing Orthogonal drawings Topology-shape-metrics approach Planarity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bertolazzi, P., Di Battista, G., Didimo, W.: Computing orthogonal drawings with the minimum number of bends. In: Dehne, F., Rau-Chaplin, A., Sack, J.-R., Tamassia, R. (eds.) Proceedings of the 5th Workshop on Algorithms, Data Structures. Lecture Notes in Computer Science, vol. 1272, pp. 331–344. Springer, Berlin (1997) Google Scholar
  2. 2.
    Bridgeman, S.S., Di Battista, G., Didimo, W., Liotta, G., Tamassia, R., Vismara, L.: Turn-regularity and optimal area drawings of orthogonal representations. Comput. Geom. 16, 53–93 (2000) MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Cairns, G., Nikolayevsky, Y.: Bounds for generalized thrackles. Discrete Comput. Geom. 23(2), 191–206 (2000) MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing. Prentice-Hall, Upper Saddle River (1999) MATHGoogle Scholar
  5. 5.
    Di Battista, G., Liotta, G., Vargiu, F.: Spirality and optimal orthogonal drawings. SIAM J. Comput. 27(6), 1764–1811 (1998) MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Fößmeier, U., Kaufmann, M.: Drawing high degree graphs with low bend numbers. In: Brandenburg, F.J. (ed.) Graph Drawing (Proc. GD ’95). Lecture Notes in Computer Science, vol. 1027, pp. 254–266. Springer, Berlin (1996) CrossRefGoogle Scholar
  7. 7.
    Garg, A., Tamassia, R.: On the computational complexity of upward and rectilinear planarity testing. SIAM J. Comput. 31(2), 601–625 (2001) MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Lovász, L., Pach, J., Szegedy, M.: On Conway’s thrackle conjecture. In: Symposium on Computational Geometry, pp. 147–151 (1995) Google Scholar
  9. 9.
    Nakano, S.-I., Yoshikawa, M.: A linear-time algorithm for bend-optimal orthogonal drawings of biconnected cubic plane graphs. In: Marks, J. (ed.) Graph Drawing. Lecture Notes in Computer Science, pp. 296–307. Springer, Berlin (2000) Google Scholar
  10. 10.
    Patrignani, M.: On the complexity of orthogonal compaction. Comput. Geom. 19(1), 47–67 (2001) MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Rahman, M.S., Nakano, S.-I., Nishizeki, T.: A linear algorithm for bend-optimal orthogonal drawings of triconnected cubic plane graphs. J. Graph Algorithms Appl. 3(4), 31–62 (1999) MATHMathSciNetGoogle Scholar
  12. 12.
    Tamassia, R.: New layout techniques for entity-relationship diagrams. In: Proceedings of the 4th International Conference on Entity-Relationship Approach, pp. 304–311 (1985) Google Scholar
  13. 13.
    Tamassia, R.: On embedding a graph in the grid with the minimum number of bends. SIAM J. Comput. 16(3), 421–444 (1987) MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Tamassia, R., Di Battista, G., Batini, C.: Automatic graph drawing and readability of diagrams. IEEE Trans. Syst. Man Cybern. 18(1), 61–79 (1988) CrossRefGoogle Scholar
  15. 15.
    Tamassia, R., Tollis, I.G.: Planar grid embedding in linear time. IEEE Trans. Circuits Syst. 36(9), 1230–1234 (1989) CrossRefMathSciNetGoogle Scholar
  16. 16.
    Tamassia, R., Tollis, I.G., Vitter, J.S.: Lower bounds and parallel algorithms for planar orthogonal grid drawings. In: Proceedings of IEEE Symposium on Parallel and Distributed Processing, pp. 386–393 (1991) Google Scholar
  17. 17.
    Vijayan, G., Wigderson, A.: Rectilinear graphs and their embeddings. SIAM J. Comput. 14, 355–372 (1985) MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Giuseppe Di Battista
    • 1
  • Fabrizio Frati
    • 1
  • Maurizio Patrignani
    • 1
  1. 1.Dipartimento di Informatica e AutomazioneUniversità Roma TreRomaItaly

Personalised recommendations