Advertisement

Theory of Computing Systems

, Volume 44, Issue 4, pp 590–619 | Cite as

Structural Recursion as a Query Language on Lists and Ordered Trees

  • Edward L. Robertson
  • Lawrence V. Saxton
  • Dirk Van Gucht
  • Stijn Vansummeren
Article

Abstract

XML query languages need to provide some mechanism to inspect and manipulate nodes at all levels of an input tree. We investigate the expressive power provided in this regard by structural recursion. In particular, we show that the combination of vertical recursion down a tree combined with horizontal recursion across a list of trees gives rise to a robust class of transformations: it captures the class of all primitive recursive queries. Since queries are expected to be computable in at most polynomial time for all practical purposes, we next identify a restriction of structural recursion that captures the polynomial time queries. We also give corresponding results for list-based complex objects.

Keywords

Structural recursion Primitive recursion XML Complex objects Database 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abiteboul, S., Beeri, C.: The power of languages for the manipulation of complex values. VLDB J. 4(4), 727–794 (1995) CrossRefGoogle Scholar
  2. 2.
    Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley, Reading (1995) zbMATHGoogle Scholar
  3. 3.
    Bellantoni, S., Cook, S.: A new recursion-theoretic characterization of the polytime functions (extended abstract). In: STOC 1992, pp. 283–293. ACM Press, New York (1992) CrossRefGoogle Scholar
  4. 4.
    Boag, S., Chamberlin, D., Fernández, M.F., Florescu, D., Robie, J., Siméon, J.: XQuery 1.0: An XML Query Language. W3C Recommendation, January 2007 Google Scholar
  5. 5.
    Bonner, A.J., Mecca, G.: Sequences, datalog, and transducers. J. Comput. Syst. Sci. 57(3), 234–259 (1998) zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Boolos, G.S., Jeffrey, R.C.: Computability and Logic, 3rd edn. Cambridge University Press, Cambridge (1989) zbMATHGoogle Scholar
  7. 7.
    Buneman, P., Fernandez, M.F., Suciu, D.: UnQL: a query language and algebra for semistructured data based on structural recursion. VLDB J. 9(1), 76–110 (2000) CrossRefGoogle Scholar
  8. 8.
    Buneman, P., Naqvi, S.A., Tannen, V., Wong, L.: Principles of programming with complex objects and collection types. Theor. Comput. Sci. 149(1), 3–48 (1995) zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Caseiro, V.-H.: Equations for defining poly-time functions. PhD thesis, University of Oslo (1997) Google Scholar
  10. 10.
    Chandra, A.K., Harel, D.: Computable queries for relational data bases. J. Comput. Syst. Sci. 21(2), 156–178 (1980) zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Cobham, A.: The intrinsic computational difficulty of functions. In: Logic, Methodology, and Philosophy of Science II, pp. 24–30. Springer, Berlin (1965) Google Scholar
  12. 12.
    Colby, L.S., Libkin, L.: Tractable iteration mechanisms for bag languages. In: ICDT 1997. Lecture Notes in Computer Science, vol. 1186, pp. 461–475. Springer, Berlin (1997) Google Scholar
  13. 13.
    Colby, L.S., Robertson, E.L., Saxton, L.V., Van Gucht, D.: A query language for list-based complex objects. In: PODS 1994, pp. 179–189. ACM Press, New York (1994) CrossRefGoogle Scholar
  14. 14.
    Draper, D., Fankhauser, P., Fernández, M.F., Malhotra, A., Rose, K., Rys, M., Siméon, J., Wadler, P.: XQuery 1.0 and XPath 2.0 Formal Semantics. W3C Recommendation, January 2007 Google Scholar
  15. 15.
    Fernández, M.F., Malhotra, A., Marsh, J., Nagy, M., Walsh, N.: XQuery 1.0 and XPath 2.0 Data Model. W3C Recommendation, January 2007 Google Scholar
  16. 16.
    Girard, J.-Y.: Light linear logic. Inf. Comput. 143(2), 175–204 (1998) zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Gladstone, M.D.: Simplifications of the recursion scheme. J. Symb. Log. 36(4), 653–665 (1971) CrossRefMathSciNetGoogle Scholar
  18. 18.
    Grumbach, S., Milo, T.: Personal communication Google Scholar
  19. 19.
    Grumbach, S., Milo, T.: An algebra for pomsets. Inf. Comput. 150(2), 268–306 (1999) zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Hofmann, M.: A mixed modal/linear lambda calculus with applications to Bellantoni-Cook safe recursion. In: CSL 1997. Lecture Notes in Computer Science, vol. 1414, pp. 275–294. Springer, Berlin (1998) Google Scholar
  21. 21.
    Hofmann, M.: Linear types and non-size-increasing polynomial time computation. In: LICS, pp. 464–473 (1999) Google Scholar
  22. 22.
    Hofmann, M.: Semantics of linear/modal lambda calculus. J. Funct. Program. 9(3), 247–277 (1999) zbMATHCrossRefGoogle Scholar
  23. 23.
    Hofmann, M., Jost, S.: Static prediction of heap space usage for first-order functional programs. In: POPL, pp. 185–197 (2003) Google Scholar
  24. 24.
    Hull, R., Su, J.: Algebraic and calculus query languages for recursively typed complex objects. J. Comput. Syst. Sci. 47(1), 121–156 (1993) zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Immerman, N., Patnaik, S., Stemple, D.W.: The expressiveness of a family of finite set languages. Theor. Comput. Sci. 155(1), 111–140 (1996) zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Leivant, D.: Stratified functional programs and computational complexity. In: POPL 1993, pp. 325–333. ACM Press, New York (1993) CrossRefGoogle Scholar
  27. 27.
    Libkin, L., Wong, L.: Query languages for bags and aggregate functions. J. Comput. Syst. Sci. 55(2), 241–272 (1997) zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Sazonov, V.Yu.: Hereditarily-finite sets, data bases and polynomial-time computability. Theor. Comput. Sci. 119(1), 187–214 (1993) zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Suciu, D.: Bounded fixpoints for complex objects. Theor. Comput. Sci. 176(1–2), 283–328 (1997) zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Suciu, D., Wong, L.: On two forms of structural recursion. In: ICDT 1995. Lecture Notes in Computer Science, vol. 893, pp. 111–124. Springer, Berlin (1995) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Edward L. Robertson
    • 1
  • Lawrence V. Saxton
    • 2
  • Dirk Van Gucht
    • 1
  • Stijn Vansummeren
    • 3
  1. 1.Indiana UniversityBloomingtonUSA
  2. 2.University of ReginaReginaCanada
  3. 3.Hasselt University and Translational University of LimburgDiepenbeekBelgium

Personalised recommendations