Advertisement

Theory of Computing Systems

, Volume 45, Issue 1, pp 150–161 | Cite as

Sophistication Revisited

Article

Abstract

Kolmogorov complexity measures the amount of information in a string as the size of the shortest program that computes the string. The Kolmogorov structure function divides the smallest program producing a string in two parts: the useful information present in the string, called sophistication if based on total functions, and the remaining accidental information. We formalize a connection between sophistication (due to Koppel) and a variation of computational depth (intuitively the useful or nonrandom information in a string), prove the existence of strings with maximum sophistication and show that they are the deepest of all strings.

Keywords

Kolmogorov complexity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Antunes, L., Fortnow, L., van Melkebeek, D., Vinodchandran, N.: Computational depth: Concept and applications. Theor. Comput. Sci. 354(3), 391–404 (2006) MATHCrossRefGoogle Scholar
  2. 2.
    Bennett, C.H.: Logical depth and physical complexity. In: Herken, R. (ed.) The Universal Turing Machine: A Half-Century Survey, pp. 227–257. Oxford University Press, London (1988) Google Scholar
  3. 3.
    Chaitin, G.: On the length of programs for computing finite binary sequences. J. ACM 13(4), 145–149 (1966) CrossRefMathSciNetGoogle Scholar
  4. 4.
    Cover, T.M.: Kolmogorov complexity, data compression, and inference. In: Skwirzynski, J.K. (ed.) The Impact of Processing Techniques on Communications, pp. 23–33. Nijhoff, Dordrecht (1985) Google Scholar
  5. 5.
    Daley, R.: Busy beaver sets: characterizations and applications. Inf. Control 52, 52–67 (1982) MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Gács, P., Tromp, J., Vitányi, P.: Algorithmic statistics. IEEE Trans. Inf. Theory 47(6), 2443–2463 (2001) MATHCrossRefGoogle Scholar
  7. 7.
    Kolmogorov, A.N.: Three approaches to the quantitative definition of information. Probl. Inf. Transm. 1(1), 1–7 (1965) MathSciNetGoogle Scholar
  8. 8.
    Koppel, M.: Structure. In: Herken, R. (ed.) The Universal Turing Machine: A Half-Century Survey, pp. 435–452. Oxford University Press, London (1988) Google Scholar
  9. 9.
    Koppel, M.: Learning to predict non-deterministically generated strings. Mach. Learn. 7, 85–99 (1991) MATHGoogle Scholar
  10. 10.
    Koppel, M., Atlan, H.: An almost machine-independent theory of program-length complexity, sophistication, and induction. Inf. Sci. 56, 23–33 (1991) MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Levin, L.: Universal search problems. Probl. Inf. Transm. 9, 265–266 (1973) Google Scholar
  12. 12.
    Li, M., Vitányi, P.: An Introduction to Kolmogorov Complexity and its Applications, 2nd edn. Springer, Berlin (1997) MATHGoogle Scholar
  13. 13.
    Shen, A.: The concept of (α,β)-stochasticity in the Kolmogorov sense, and its properties. Sov. Math. Dokl. 28, 295–299 (1983) MATHGoogle Scholar
  14. 14.
    Solomonoff, R.: A formal theory of inductive inference, part I. Inf. Control 7(1), 1–22 (1964) MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Vereshchagin, N., Vitányi, P.: Kolmogorov’s structure functions and an application to the foundations of model selection. In: Proc. 47th IEEE Symp. Found. Comput. Sci. (2002) Google Scholar
  16. 16.
    Vitányi, P.: Meaningful information. IEEE Trans. Inf. Theory 52(10), 4617–4627 (2006) CrossRefGoogle Scholar
  17. 17.
    V’yugin, V.V.: Algorithmic complexity and stochastic properties of finite binary sequences. Comput. J. 42(4), 294–317 (1999) MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.University of PortoPortoPortugal
  2. 2.University of ChicagoChicagoUSA

Personalised recommendations