Advertisement

Theory of Computing Systems

, Volume 45, Issue 1, pp 133–149 | Cite as

Infinite Traces and Symbolic Dynamics

  • Wit Foryś
  • Piotr OprochaEmail author
Article

Abstract

The aim of this paper is to formulate a framework for studying dynamical properties of parallel computation processes represented by a continuous map acting on a space of infinite real traces. The fundamental concept of our approach is to join the tools of symbolic dynamics and trace theory.

Keywords

Word Trace Shift Dynamical language Shift on traces Transitivity Entropy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blanchard, F., Kůrka, P.: Language complexity of rotations and Sturmian sequences. Theor. Comput. Sci. 209(1–2), 179–193 (1998) zbMATHCrossRefGoogle Scholar
  2. 2.
    Blondel, V.D., Cassaigne, J., Nichitiu, C.: On the presence of periodic configurations in Turing machines and in counter machines. Theor. Comput. Sci. 289(1), 573–590 (2002) zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bournez, O., Cosnard, M.: On the computational power of dynamical systems and hybrid systems. Theor. Comput. Sci. 168(2), 417–459 (1996) zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Cartier, P., Foata, D.: Problèmes combinatories de commutation et réarrangements. Lecture Notes in Mathematics. Sringer, New York (1969) Google Scholar
  5. 5.
    Diekert, V.: Combinatorics on Traces. Lectures Notes in Computer Science. Springer, Berlin (1990) zbMATHGoogle Scholar
  6. 6.
    Diekert, V., Métivier, Y.: Partial commutation and traces. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. 3, pp. 457–534. Springer, New York (1997), Chap. 8 Google Scholar
  7. 7.
    Diekert, V., Rozenberg, G. (eds.): The Book of Traces. World Scientific, River Edge (1995) Google Scholar
  8. 8.
    Gastin, P., Petit, A.: Infinite traces. In: The Book of Traces, pp. 393–486. World Scientific, River Edge (1995) Google Scholar
  9. 9.
    Kari, J.: Rice’s theorem for the limit sets of cellular automata. Theor. Comput. Sci. 127(2), 229–254 (1994) zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Kůrka, P.: On topological dynamics of Turing machines. Theor. Comput. Sci. 174(1–2), 203–216 (1997) zbMATHCrossRefGoogle Scholar
  11. 11.
    Kwiatkowska, M.: A metric for traces. Inf. Process. Lett. 35, 42–56 (1990) MathSciNetGoogle Scholar
  12. 12.
    Lind, D., Marcus, B.: Introduction to Symbolic Dynamics and Coding. Cambridge University Press, Cambridge (1995) zbMATHGoogle Scholar
  13. 13.
    Mañé, R.: Ergodic Theory and Differentiable Dynamics. Springer, Berlin (1987) zbMATHGoogle Scholar
  14. 14.
    Mazurkiewicz, A.: Concurrent program schemes and their interpretations. DAIMI Rep. Aarhus Univ. 78, 1–45 (1977) Google Scholar
  15. 15.
    Mitchell, M., Hraber, P.T., Crutchfield, J.P.: Dynamic, computation, and the “edge of chaos”: a re-examination. In: Cowan, G.A., Pines, D., Melzner, D. (eds.) Complexity: Metaphors, Models, and Reality. SFI Studies in the Sciences of Complexity, pp. 497–513. Addison-Wesley, Reading (1994) Google Scholar
  16. 16.
    Moore, C.: Unpredictability and undecidability in dynamical systems. Phys. Rev. Lett. 64(20), 2354–2357 (1990) zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Oprocha, P., Wilczyński, P.: Shift spaces and distributional chaos. Chaos Solitons Fractals 31, 347–355 (2007) zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Siegelmann, H.T.: Neural Networks and Analog Computation. Progress in Theoretical Computer Science. Birkhäuser, Boston (1999). Beyond the Turing limit zbMATHGoogle Scholar
  19. 19.
    Siegelmann, H.T., Fishman, S.: Analog computation with dynamical systems. Physica D 120(1–2), 214–235 (1998) zbMATHCrossRefGoogle Scholar
  20. 20.
    Walters, P.: On pseudo orbit tracing property and its relationship to stability. In: Lecture Notes in Math., vol. 668, pp. 231–244 (1978) Google Scholar
  21. 21.
    Wolfram, S.: A New Kind of Science. Wolfram Media, Inc., Champaign (2002) zbMATHGoogle Scholar
  22. 22.
    Xie, H.: Gramatical Complexity and One-dimensional Dynamical Systems. Directions in Chaos. World Scientific, Singapore (1996) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Institute of Computer ScienceJagiellonian UniversityKrakówPoland
  2. 2.Faculty of Applied MathematicsAGH University of Science and TechnologyKrakówPoland

Personalised recommendations