Theory of Computing Systems

, Volume 44, Issue 3, pp 455–499 | Cite as

A Kleene Theorem for Weighted Tree Automata over Distributive Multioperator Monoids

  • Zoltán Fülöp
  • Andreas Maletti
  • Heiko VoglerEmail author


Kleene’s theorem on the equivalence of recognizability and rationality for formal tree series over distributive multioperator monoids is proved. As a consequence of this, Kleene’s theorem for weighted tree automata over arbitrary, i.e., not necessarily commutative, semirings is derived.


Recognizable tree series Rational tree series Semirings Multioperator monoids 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berstel, J., Reutenauer, C.: Recognizable formal power series on trees. Theor. Comput. Sci. 18(2), 115–148 (1982) zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bozapalidis, S.: Equational elements in additive algebras. Theory Comput. Syst. 32(1), 1–33 (1999) zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bozapalidis, S.: Context-free series on trees. Inf. Comput. 169, 186–229 (2001) zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bozapalidis, S., Grammatikopoulou, A.: Recognizable picture series. J. Autom. Lang. Comb. 10, 159–183 (2005) zbMATHMathSciNetGoogle Scholar
  5. 5.
    Courcelle, B.: Equivalences and transformations of regular systems—applications to recursive program schemes and grammars. Theor. Comput. Sci. 42, 1–122 (1986) zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Droste, M., Gastin, P.: The Kleene-Schützenberger theorem for formal power series in partially commuting variables. Inf. Comput. 153, 47–80 (1999). Extended abstract in: 24th ICALP, LNCS, vol. 1256, pp. 682–692. Springer (1997) zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Droste, M., Pech, C., Vogler, H.: A Kleene theorem for weighted tree automata. Theory Comput. Syst. 38, 1–38 (2005) zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Engelfriet, J.: Alternative Kleene theorem for weighted automata. Personal communication (2003) Google Scholar
  9. 9.
    Engelfriet, J., Fülöp, Z., Vogler, H.: Bottom-up and top-down tree series transformations. J. Autom. Lang. Comb. 7, 11–70 (2002) zbMATHMathSciNetGoogle Scholar
  10. 10.
    Ésik, Z., Kuich, W.: Formal tree series. J. Autom. Lang. Comb. 8(2), 219–285 (2003) zbMATHMathSciNetGoogle Scholar
  11. 11.
    Fülöp, Z., Gazdag, Z., Vogler, H.: Hierarchies of tree series transformations. Theor. Comput. Sci. 314, 387–429 (2004) zbMATHCrossRefGoogle Scholar
  12. 12.
    Fülöp, Z., Vogler, H.: Comparison of several classes of weighted tree automata. Technical report, TU Dresden (2006). TUD-FI06-08-Dez.2006 Google Scholar
  13. 13.
    Giammarresi, D., Restivo, A.: Two-dimensional languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, Part III, pp. 215–268. Springer, New York (1997) Google Scholar
  14. 14.
    Kleene, S.E.: Representation of events in nerve nets and finite automata. In: Shannon, C.E., McCarthy, J. (eds.) Automata Studies, pp. 3–42. Princeton University Press, Princeton (1956) Google Scholar
  15. 15.
    Kuich, W.: Formal power series over trees. In: Bozapalidis, S. (ed.) 3rd International Conference on Developments in Language Theory, DLT 1997, Thessaloniki, Greece, Proceedings, pp. 61–101. Aristotle University of Thessaloniki, Thessaloniki (1998) Google Scholar
  16. 16.
    Kuich, W.: Linear systems of equations and automata on distributive multioperator monoids. In: Contributions to Algebra, vol. 12, pp. 1–10. Johannes Heyn (1999) Google Scholar
  17. 17.
    Maletti, A.: Hasse diagrams for classes of deterministic bottom-up tree-to-tree-series transformations. Theor. Comput. Sci. 339, 200–240 (2005) zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Maletti, A.: Relating tree series transducers and weighted tree automata. Int. J. Found. Comput. Sci. 16(4), 723–741 (2005) zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Maletti, A.: Compositions of tree series transformations. Theor. Comput. Sci. 366, 248–271 (2006) zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Mäurer, I.: Rational and recognizable picture series. In Conference on Algebraic Informatics, Thessaloniki, April 2005 Google Scholar
  21. 21.
    Mäurer, I.: Characterizations of recognizable picture series. Theor. Comput. Sci. 374, 214–228 (2007) CrossRefGoogle Scholar
  22. 22.
    Ochmanski, E.: Regular behaviour of concurrent systems. Bull. Eur. Assoc. Theor. Comput. Sci. 27, 56–67 (1985) Google Scholar
  23. 23.
    Pech, C.: Kleene-type results for weighted tree automata. Ph.D. thesis, TU Dresden (2003) Google Scholar
  24. 24.
    Pech, C.: Kleene’s theorem for weighted tree-automata. In: 14th International Symposium on Fundamentals of Computation Theory FCT 2003, Malmö, Sweden. Lecture Notes in Computer Science, vol. 2751, pp. 387–399. Springer, New York (2003) Google Scholar
  25. 25.
    Schützenberger, M.P.: On the definition of a family of automata. Inf. Control 4, 245–270 (1961) zbMATHCrossRefGoogle Scholar
  26. 26.
    Thatcher, J.W., Wright, J.B.: Generalized finite automata theory with an application to a decision problem of second-order logic. Math. Syst. Theory 2(1), 57–81 (1968) CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Zoltán Fülöp
    • 1
  • Andreas Maletti
    • 2
  • Heiko Vogler
    • 2
    Email author
  1. 1.Department of Computer ScienceUniversity of SzegedSzegedHungary
  2. 2.Faculty of Computer ScienceDresden University of TechnologyDresdenGermany

Personalised recommendations